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PREFACE TO THE THIRD EDITION.

Some time after the publication of ah Octavo Edition of Euclid's

Elements with Geometrical Exercises, &c, designed for the use of

Academical Students ; at the request of some schoolmasters of emi-

nence, a duodecimo Edition of the Six Books was put forth on the

same plan for the use of Schools. Soon after its appearance, Pro-

fessor Christie, the Secretary of the Royal Society, in the Preface to

his Treatise on Descriptive Geometry for the use of the Royal Military

Academy, was pleased to notice these works in the following terms :

—

" When the greater Portion of this Part of the Course was printed,

and had for some time been in use in the Academy, a new Edition of

Euclid's Elements, by Mr. Robert Potts, M.A., of Trinity College,

Cambridge, which is likely to supersede most others, to the extent, at

least, of the Six Books, was published. From the manner of arrang-

ing the Demonstrations, this edition has the advantages of the

symbolical form, and it is at the same time free from the manifold

objections to which that form is open. The duodecimo edition of this

Work, comprising only the first Six Books of Euclid, with Deductions

from thtm, having been introduced at this Institution as a text-book.,

now renders any other Treatise on Plane Geometry unnecessary id

our course of Mathematics."

For the very favourable reception which both Editions have met

with, the Editor's grateful acknowledgements are due. It has been his

desire in putting fcrth a revised Edition of the School Euclid, to render

the work in some degree mo-° worthy of the favour which tne former

editions have received. In the present Edition several errors and

oversights have been corrected and some additions made to the note.s

:

the questions on each book hava been considerably augmented and a

better arrangement of the Geometrical Exercises has been attempted

:

and lastly, some hints and remarks on them have been given to assist

the learner. The additions made to the present Edition amount to

more than fifty pages, and, it is hoped, that they will render the work

more useful to the learner.

And here an occasion may be taken to quote the opinions of some

able men respecting the use ana importance of the Mathematical

Sciences.

On the subject of Education in its most extensive sense, an ancient

writer " directs the aspirant after excellence to commence with the

Science of Moral Culture; to proceed next to Logic ; next to Mathe-

matics ; next to Physics ; and lastly, to Theology." Another writer

on Education would place Mathematics before Logic, which (ho

remarks) " seems the preferable course : for by practising itself in the
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former, the mind becomes stored with distinctions ; the faculties of

constancy and firmness are established; and its rule is always to dis-

tinguish between cavilling and investigation—between close reasoning

and cross reasoning ; for the contrary of all which habits, those are for

the most part noted, who apply themselves to Logic without studying

in some department of Mathematics ; taking noise and wrangling for

proficiency, and thinking refutation accomplished by the instancing

of a doubt. This will explain the inscription placed by Plato over the

door of his house :
' Whoso Knows not Geometry, let him not enter

here.' On the precedence of Moral Culture, however, to all the other

Sciences, the acknowledgement is general, and the agreement entire."

The same writer recommends the study of the Mathematics, for the

cure of "compound ignorance." " Of this," he proceeds to say, " the

essence is opinion not agreeable to fact ; and it necessarily involves

another opinion, namely, that we are already possessed of knowledge.

So that besides not knowing, we know not that we know not ; and

hence its designation of compound ignorance. In like manner, as if

many chronic complaints and established maladies, no cure can be

effected by physicians of the body : of this, no cure can be effected by

physicians of the mind : for with a pre-supposal of knowledge in our

own regard, the pursuit and acquirement of further knowledge is not

to be looked for. The approximate cure, and one from which in the

main much benefit may be anticipated, is to engage the patient in thr*t

study of measures (Geometry, computation, &c); for in such pursuits

the true and the false are separated by the clearest interval, and no

room is left for the intrusions of fancy. From these the mind may
discover the delight of certainty ; and when, on returning to his own

opinions, it finds in them no such sort of repose and gratification, it

may discover their erroneous character, its ignorance may become

simple, and a capacity for the acquirement of truth and virtue be

obtained."

Lord Bacon, the founder of Inductive Philosophy, was not insen-

sible of the high importance of the Mathematical Sciences, as appears

hi the following passage from his work on " The Advancement of

Learning."

" The Mathematics are either pure or mixed. To the pure Mathe-

matics are those sciences belonging which handle quantity determinate,

DfiHrely severed from any axioms of natural pnilosophy ; and these are

lwo, Geometry, and Arithmetic; the one handling quantity continued,

and the other dissevered. Mixed hath for subject some axioms or

parts of natural philosophy, and considereth quantity determined, as it

is auxiliary and incident unto them. For many parts of nature an
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neither be invented with sufficient subtlety, nor demonstrated with

sufficient perspicuity, nor accommodated unto use with sufficient

dexterity, without the aid and intervening of the Mathematics : of

which sort are perspective, music, astronomy, cosmography, archi-

tecture, enginery, and divers others.

•' In the Mathematics I can report no deficience, except it be that

men do not sufficiently understand the excellent use of the pure

Mathematics, in that they do remedy and cure many defects in the

wit and faculties intellectual. For, if the wit be dull, they sharpen it

;

if too wandering, they fix it; if too inherent in the sense, they abstract

it. So that as tennis is a game of no use in itself, but of great use in

.respect that it maketh a quick eye, and a body ready to put itself into

all postures; so in the Mathematics, that use which is collateral and

intervenient, is no less worthy than that which is principal and

intended. And as for the mixed Mathematics, I may only make this

prediction, that there cannot fail to be more kinds of them, as nature

grows further disclosed."

How truly has this prediction been fulfilled in the subsequent

advancement of the Mixed Sciences, and in the applications of the

pure Mathematics to Natural Philosophy!

Dr. Whewell, in his '* Thoughts on the Study of Mathematics,"

has maintained, that mathematical studies judiciously pursued, form

)ne of the most effective means of developing and cultivating the

teason: and that "the object of a liberal education is to develope the

whole mental system of man;—to make his speculative inferences

coincide with his practical convictions ;—to enable him to render a

reason for the belief that is in him, and not to leave him in the con-

dition of Solomon's sluggard, who is wiser in his own conceit than

aeven men that can render a reason." And in his more recent work

entitled, " Of a Liberal Education, &c." he has more fully shewn the

importance of Geometry as one of the most effectual instruments

of intellectual education. In page 55 he thus proceeds :—" But

besides the value of Mathematical Studies in Education, as a perfect

example and complete exercise of demonstrative reasoning ; Mathe-

matical Truths have this additional recommendation, that they have

always been referred to, by each successive generation of thoughtful

and cultivated men, as examples of truth and of demonstration ; and
have thus become standard points of reference, among cultivated men,

whenever they speak of truth, knowledge, or proof. Thus Mathe-

matics has not only a disciplinal but an historical interest. This is

peculiarly the case with those portions of Mathematics which we have

mentioned. We find geometrical proof adduced in illustration of the
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nature of reasoning, in the earliest speculations on this subject, the

Dialogues of Plato ; we find geometrical proof one of the main sub-

jects of discussion in some of the most recent of such speculations, as

those of Dugald Stewart and his contemporaries. The recollection

of the truths of Elementary Geometry has, in all ages, given a meaning

and a reality to the best attempts to explain man's power of arriving

at truth. Other branches of Mathematics have, in like manner,

become recognized examples, among educated men, of man's powers

of attaining truth."

Dr. Pemberton, in the preface to his view of Sir Isaac Newton's

Discoveries, makes mention of the circumstance, " that Newton used

to speak with regret of his mistake, at the beginning of his Mathe-

matical Studies, in having applied himself to the works of Descartes

and other Algebraical writers, before he had considered the Elements

of Euclid with the attention they deserve."

To these we may subjoin the opinion of Mr. John Stuart Mill,

which he has recorded in his invaluable System of Logic, (Vol. II.

p. 180) in the following terms. " The value of Mathematical instruc-

tion as a preparation for those more difficult investigations (physiology,

society, government, &c.) consists in the applicability not of its doc-

trines, but of its method. Mathematics will ever remain the most

perfect type of the Deductive Method in general ; and the applications

of Mathematics to the simpler branches of physics, furnish the only

school in which philosophers can effectually learn the most difficult

and important portion of their art, the employment of the laws of

simpler phenomena for explaining and predicting those of the more

complex. These grounds are quite sufficient for deeming mathemati-

cal training an indispensable basis of real scientific education, and

regarding, with Plato, one who is ay^^r/Dti-ros, as wanting in one of

the most essential qualifications for the successful cultivation of the

higher branches of philosophy."

In addition to these authorities it may be remarked, that the new
Regulations which were confirmed by a Grace of the Senate on the

11th of May, 1846, assign to Geometry and to Geometrical methods,

a more important place in the Examinations both for Honors and

for the Ordinary Degree in this University.

Trinity College, R- P.

March 1, 1850. _
j

The supplement to the School Euclid (about forty-eight pages) has

been incorporated with this impression of the Fifth Edition.

Trinity College,

October, 1863.
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EUCLID'S

ELEMENTS OF GEOMETRY.

BOOK I.

DEFINITIONS.

I.

A POINT is that which has no parts, or which has no magnitude.

II.

A line is length without breadth.

III.

The extremities of a line are points.

IV.

A straight line is that which lies evenly between its extreme points.

V.

A superficies is that which has only length and breadth.

VI.

The extremities of a superficies are lines.

VII.

A plane superficies is that in which any two points being taken, ths

straight line between them lies wholly in that, superficies.

VIII.

A plane angle is the inclination of two lines to each other in a

plane, which meet together, but are not in the same direction.

IX.

A plane rectilineal angle is the inclination of two straight lines to

one another, which meet together, but are not in the same straight line.

U
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N.B. If there be only one angle at a point, it may be expressed by
a letter placed at that point, as the angle at E : but when several angles

are at one point B, either of them is expressed by three letters, of which
the letter that is at the vertex of the angle, that is, at the point in which
the straight lines that contain the angle meet one another, is put between
the other two letters, and one of these two is somewhere upon one of

these straight lines, and the other upon the other line. Thus the angle
which is contained by the straight lines AB, CB, is named the angle
ABC, or CBA ; that which is contained by AB, DB, is named the angle
ABB, or DBA ; and that which is contained by DB, CB, is called the
angle DBC, or CBD.

X.

When a straight line standing on another straight line, makes the

adjacent angles equal to one another, each of these angles is called a

right angle ; and the straight line which stands on the other is called

a perpendicular to it.

XL
An obtuse angle is that which is greater than a right angle.

XIX.

An acute angle is that which is less than a right angle.

XIII.

A term or boundary is the extremity of any thing.

XIV.

A figure is that wnich is enclosed hv one or more boundaries,



DEFINITIONS.

XV.

A circle is a plane figure contained by one line, which is called the

circumference, and is such that all straight lines drawn from a certain

point within the figure to the circumference, are equal to one another.

XVI.

And this point is called the center of the circle.

XVII.

A diameter of a circle is a straight line drawn through the center,

and terminated both ways by the circumference.

XVIII.

A semicircle is the figure contained by a diameter and the part of

the circumference cut off by the diameter.

XIX.

The center of a semicircle is the same with that of the circle.

XX.
Rectilineal figures are those whi^h are contained by straight lines.

XXL
Trilateral figures, or triangles, by three straight lines.

XXII.

Quadrilateral, by four straight lines.

XXIII.

Multilateral figures, or polygons, by more than four straight lines.

b2
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XXIV.

Of three-sided figures, an equilateral triangle is that which has

three equal sides.

XXV.
An isosceles triangle is that which has two sides equal.

XXVI.
A scalene triangle is that which has three unequal sides.

XXVII.

A right-angled triangle is that which has a right angle.

XXVILL
An obtuse-angled triangle is that which has an obtuse angle.

XXIX.
An acute-angled triangle is that which has three acute angles.

XXX.
Of quadrilateral or four-sided figures, a square has all its sides equal

and all its angles right angles.



DEFINITIONS.

XXXI.
An oblong is that which has all its angles right angles, but has not

all its sides equal.

XXXII.
A rhombus has all its sides equal, but its angles are not right angles.

XXXIII.

A rhomboid has its opposite sides equal to each other, but all its

sides are not equal, nor its angles right angles.

_\

XXXIV.

All other four-sided figures besides these, are called Trapeziums.

XXXV.
Parallel straight lines are such as are in the same plane, and which

being produced ever so far both ways, do not meet.

A.

A parallelogram is a four-sided figure, of which the opposite sides

are parallel: and the diameter, or the diagonal is the straight line

joining two of its opposite angles.

POSTULATES.

I.

Let it be granted that a straight line may be drawn from any one
point to any other point.

II.

That a terminated straight line may be produced to any length in

a straight line.

III.

And that a circle may be described from any center, at any distance

from that center.
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AXIOMS.

I.

Things which are equal to the same thing are equal to one another.

II.

If equals be added to equals, the wholes are equal.

III.

If equals be taken from equals, the remainders are equal.

IV.

If equals be added to unequals, the wholes are unequal.

V.

If equals be taken from unequals, the remainders are unequal.

VI.

Things which are double of the same, are equal to one another.

VII.

Things which are halves of the same, are equal to one another.

VIII.

Magnitudes which coincide with one another, that is, which exactly
fill the same space, are equal to one another.

IX.

The whole is greater than its part.

X.

Two straight lines cannot enclose a space.

XI.

All right angles are equal to one another

XII.

If a straight line meets two straight lines, so as to make the two
interior angles on the same side of it taken together less than two
right angles ; these straight lines being continually produced, shall at

lpon that side on which are the angles whii

"

two right angles.

length meet upon that side on which are the angles which are less than



BOOK I. PROP. I, II.

PROPOSITION I. PROBLEM.
To describe an equilateral triangle upon a given finite straight line.

Let AB be the given straight line.

It is required to describe an equilateral triangle upon AB.
c

From the center A, at the distance AB, describe the circle BOB
j

(post. 3.)

from the center B, at the distance BA, describe the circle ACE;
and from C, one of the points in which the circles cut one another,
draw the straight lines CA, CB to the points A, B. (post. 1.)

Then ABC shall be an equilateral triangle.

Because the point A is the center of?the circle BCD,
therefore AC is equal to AB

;
(def. 15.)

and because the point B is the center of the circle ACM,
therefore BC is equal to AB

;

but it has been proved that A C is equal to AB

;

therefore AC, BC are each of them equal to AB

;

but things which are equal to the same thing are equal to one another;

therefore A

C

is equal to BC; (ax. 1.)

wherefore AB, B C, CA are equal to one another

:

and the triangle ABC is therefore equilateral,

and it is described upon the given straight line AB.
Which was required to be done.

PROPOSITION II. PROBLEM.
From a given point, to draw a straight line equal to a given straight line.

Let A be the given point, and .BCthe given straight line.

It i3 required to draw from the point A, a straight line equal to BC.

From the point A to B draw the straight line AB; (post. 1.)

upon AB describe the equilateral triangle ABD, (1. 1.)

and produce the straight lines DA, DB to E and E; (post. 2.)

from the center B< at the distance BC, describe the circle CGM,
(post. 3.) cutting DF in the point G :

and from the center D, at the distance DG, describe the circle GKL,
cutting AE in the point L.
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Then the straight line AL shall be equal to B C.

Because the point B is the center of the circle CGH,
therefore BC is equal to BG

;
(def. 15.)

and because D is the center of the circle GKL,
therefore DL is equal to DG,

and DA, DB parts of them are equal
;

(I. 1.)

therefore the remainder AL is equal to the remainder BG; (ax. 3.)

but it has been shewn that BC is equal to BG,
wherefore AL and BC are each of them equal to BG;

and things that are equal to the same thing are equal to one another

;

therefore the straight line AL is equal to BC. (ax. 1.)

Wherefore from the given point A, a straight line AL has been drawn
equal to the given straight line BC. Which was to be done.

PROPOSITION III. PROBLEM.
From the greater of two given straight lines to cut off a part equal to the less.

Let AB and Cbe the two given straight lines, of which AB is the

greater.

It is requiredto cut off fromAB the greater, a part equal to C, the less.

D

F
From the point A draw the straight line AD equal to C; (I. 2.)

and from the center A, at the distance AD, describe the circle DEF
(post. 3.) cutting AB in the point E.

Then AE shall be equal to C.

Because A is the center of the circle DEF,
therefore AE is equal to AD; (def. 15.)

but the straight line C is equal to AD
;

(constr.)

whence AE and C are each of them equal to AD

;

wherefore the straight line AE is equal to C. (ax. 1.)

And therefore from AB the greater of two straight lines, a part AE
has been cut off equal to C, the less. Which was to be done.

PROPOSITION IV. THEOREM.

If two triangles have two sides of the one equal to two sides of the other,

each to each, and have likewise the angles contained by those sides equal to

each other ; they shall likewise have their bases or third sides equal, and
the txoo triangles shall be equal, and their other angles shall be equal, each

to each, viz. those to which the equal sides are opposite.

Let ABC, DEF be two triangles, which have the two sides AB,
A C equal to the two sides DE, DF, each to each, viz. AB to DE, and
AC to DF, and the included angle BA C equal to the included angle

EDF.
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Then shall the base 2?Cbe equal to the base EF; and the triangle

ABC to the triangle DEF; and the other angles to which the equal

sides are opposite shall be equal, each to each, viz. the angle ABC to

the angle DEF, and the angle ACB to the angle DFE.

For, if the triangle ABC be applied to the triangle DEF,
so that the point A may be on D, and the straight line AB on DE;

then the point B shall coincide with the point E,
because AB is equal to DE;
and AB coinciding with DE,

the straight line A C shall fall on DF,
because the angle BA C is equal to the angle EDF;

therefore also the point C shall coincide with the point F,
because A C is equal to DF;

but the point B was shewn to coincide with the point E\
wherefore the base BC shall coincide with the base EF;
because the point B coinciding with E, and C with F,

if the base BC do not coincide with the base EF, the two straight lines

J5Cand EF would enclose a space, which is impossible, (ax. 10.)

Therefore the base BC does coincide with EF, and is equal to it

;

and the whole triangle ABC coincides with the whole triangle

DEF, and is equal to it

;

also the remaining angles of one triangle coincide with the remain-
ing angles of the other, and are equal to them,

viz. the angle ABC to the angle DEF,
and the angle A CB to DFE.

Therefore, if two triangles have two sides of the one equal to two
sides, &c. Which was to be demonstrated.

PROPOSITION V. THEOREM.
The angles at the base of an isosceles triangle are equal to each other ;

and if the equal sides be produced, the angles on the other side of the base

shall be equal.

Let ABC be an isosceles triangle of which the side AB is equal to AC,
and let the equal sides AB, AC be produced to D and E.
Then the angle ABC shall be equal to the angle A CB,

and the angle DBC to the angle ECB.
In BD take any point F;

from AE the greater, cut off AG equal to AF the less, (I. 3.)

and join FC, GB.
Because AF'is equal to AG, (constr.) and AB to AC', (hyp.)

the two sides FA, AC are equal to the two GA, AB, each to each;
and they contain the angle FA G common to the two triangles

AFC, AGB;
b5
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A

therefore the base FC is equal to the base GB, (I. 4.)

and the triangle AFC is equal to the triangle A GB,
also the remaining angles of the one are equal to the remaining angles

of the other, each to each, to -which the equal sides are opposite

;

viz. the angle ACF to the angle ABG,
and the angle AFC to the angle AGB.

And because the whole AF is equal to the whole A G,
of which the parts AB, A C, are equal

;

therefore the remainder BF is equal to the remainder CG-, (ax. 3.)

and FC has been proved to be equal to GB

;

hence, because the two sides BF, FC are equal to the two CG, GB,
each to each

;

and the angle BFC has been proved to be equal to the angle CGB,
also the base B C is common to the two triangles BFC, CGB

;

wherefore these triangles are equal, (i. 4.)

and their remaining angles, each to each, to which the equal sides

are opposite

;

therefore the angle FBCis equal to the angle GCB,
and the angle BCF to the angle CBG.

And, since it has been demonstrated,
that the whole angle ABG is equal to the whole ACF,

the parts of which, tne angles CBG, BCF axe also equal;

therefore the remaining angleABCis equal to the remaining angle A CB,
which are the angles at the base of the triangle ABC;
and it has also been proved,

that the angle FBCis equal to the angle GCB,
which are the angles upon the other side of the base.

Therefore the angles at the base, &c. q.e.d.

Cor. Hence an equilateral triangle is also equiangular.

PROPOSITION VI. THEOREM.
If two angles of a triangle be equal to each other ; the sides also which

subtend, or are opposite to, the equal angles, shall be equal to one another.

Let ABC be a triangle having the angle ABC equal to the angle ACB.
Then the side A B shall be equal to the side A C.
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For, ifAB be not equal to A C,

one of them is greater than the other.

If possible, let AB be greater than AC;
and from BA cut off BD equal to CA the less, (i. 3.) and join DC.

Then, in the triangles BBC, ABC,
because DB is equal to AC, and BC is common to both triangles,

the two sides DB, BC&re equal to the two sides A C, CB, each to each

;

and the angle DBCis equal to the angle ACB; (hyp.)

therefore the base DC is equal to the base AB, (I. 4.)

and the triangle DBCis equal to the triangle ABC,
the less equal to the greater, which is absurd, (ax. 9.)

Therefore AB is not unequal to A C, that igj AB is equal to A C.
Wherefore, if two angles, &c. Q.E.D.

Cor. Hence an equiangular triangle is also equilateral.

PROPOSITION YII. THEOREM.
Upon the same base, and on the same side of it, there cannot be two

triangles that have their sides which are terminated in one extremity of the

base, equal to one another, and likewise those which are terminated in the

other extremity.

If it be possible, on the same base AB, and upon the same side of

it, let there be two triangles A CB, ADB, which have their sides CA,
DA, terminated in the extremity A of the base, equal to one another,

and likewise their sides CB, DB, that are terminated in B.
c D

A B

Join CD.
First. When the vertex of each of the triangles is without the

other triangle.

Because AC is equal to AD in the triangle ACD,
therefore the angle ADC is equal to the angle ACD; (I. 5.)

but the angle ACD is greater than the angle BCD
;
(ax. 9.)

therefore also the angle ADC is greater than BCD;
much more therefore is the angle BDC greater than B CD.

Again, because the side I?Cis equal to BD in the triangle BCD, (hyp.)

therefore the angle BDC is equal to the angle BCD; (i. 5.)

but the angle BDC was proved greater than the angle BCD,
hence the angle BDCis both equal to, and greater than the angle BCD;

which is impossible.

Secondly. Let the vertex D of the triangle ADB fall within the

triangle A CB.
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Produce AC to E, and AD to F, and join CD.

Then because ^4C is equal to AD in the triangle ACD,
therefore the angles ECD, FDC upon the other side of the base CD,

are equal to one another
;

(i. 5.)

but the angle ECD is greater than the angle BCD; (ax. 9.)

therefore also the angle FDC is greater than the angle BCD-,

much more then is the angle BDC greater than the anglo BCD.
Again, because BC is equal to BD in the triangle BCD,

therefore the angle BDC is equal to the angle BCD, (i. 5.)

but the angle BDC has been proved greater than BCD,
wherefore the angle BDC is both equal to, and greater than the

angle BCD
;

which is impossible.

Thirdly. The case in which the vertex of one triangle is upon a

side of the other, needs no demonstration.

Therefore, upon the same base and on the same side of it, &c. q.e.d.

PROPOSITION VIII. THEOREM.

If two triangles have tivo sides of the one equal to two sides of the other,

each to each, and have likewise their bases equal; the angle which is con-

tained by the two sides or the one shall be equal to the angle contained by

the two sides equal to them, of the other.

Let ABC, DEF be two triangles, having the two sides AB, AC,
equal r.o the two sides DE, DF, each to each, viz. AB to DE, and

AG to DF, and also the base BC equal to the base EF.

A D G

E F

Then the angle BAG shall be equal to the angle EDF.
For, if the triangle ABC be applied to DEF,

so that the point B be on E, and the straight line BC on EF;
then because BC is equal to EF, (hyp.)

therefore the point C shall coincide with the point F*
wherefore BC coinciding with EF,

BA and A C shall coincide with ED, DF;
for, if the base BC coincide with the base EF, but the sides BA, A C,

do not coincide with the sides ED, DF, but have a different situation

as EG, GF:
then, upon the same base, and upon the same side of it, there can

be two triangles which have their sides which are terminated in one
extremity of the base, equal to one another, and likewise those sides

which are terminated in the other extremity; but this is impossible, (i. 7.)

Therefore, if the base BC coincide with the base EF,
the sides BA, A C cannot but coincide with the sides ED, DF;

wherefore likewise the angle BA C coincides with the angle EDF, and
is equal to it. (ax. 8.)

Therefore if two triangles have two sides, &c. q.e.q.
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PROPOSITION IX. PROBLEM.

To bisect a given rectilineal angle, that is, to divide it into two equal

angles.

Let BAC be the given rectilineal angle.

It is required to bisect it.

In AB take any point D

;

from AC exit offAE equal to AD, (I. 3.) and join DE

;

on the side ofDE remote from A,
describe the equilateral triangle DEF(I. 1.), and join AF.
Then the straight line AF shall bisect the angle BAC.

Because AD is equal to AE, (constr.)

and ^4-Fis common to the two triangles DAF, EAF;
the two sides DA, AF, are equal to the two sides EA, AF, each to each;

and the base DF is equal to the base EF: (constr.)

therefore the angle DAF is equal to the angle EAF. (I. 8.)

Wherefore the angle BA C is bisected by the straight line AF. q.e.f.

PROPOSITION X. PROBLEM.

To bisect a given finite straight line, that is, to divide it into two equal

parts.

Let AB be the given straight line.

It is required to divide AB-into two equal parts.

Upon AB describe the equilateral triangle ABC; (I. 1.)

and bisect the angle A CB by the straight line CD meeting AB in the

point D. (i. 9.)

Then AB shall be cut into two equal parts in the point D.
Because A C is equal to CB, (constr.)

and CD is common to the two triangles A CD, BCD

;

the two sides AC, CD are equal to the two BC, CD, each to each;

and the angle A CD is equal to BCD', (constr.)

therefore the base AD is equal to the base BD. (I. 4.)

"Wherefore the straight line AB is divided into two equal parts in the

point D. q.e.f.
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PROPOSITION XI. PROBLEM.
To draw a straight line at right angles to a given straight line, from a

giue?i point in the same.

Let AB be the given straight line, and Ca given point in it.

It is required to draw a straight line from the point C at right
angles to AB

F

In AC take any point B, and make CE equal to CD', (I. 3.)

upon BE describe the equilateral triangle BEF (I. 1,) and join CF.
Then CF drawn from the point C, shall be at right angles to AB.
Because BC is equal to EC, and FCis common to the two triangles

BCF, ECF;
the two sides BC, CF are equal to the two sides EC, CF, each to each

;

and the base BF is equal to the base EF; (constr.)

therefore the angle BCF is equal to the angle ECF: (I. 8.)

and these two angles are adjacent angles.

But when the two adjacent angles which one straight line makes
with another straight line, are equal to one another, each of them is

called a right angle : (def. 10.)

therefore each of the angles BCF, ECF is a right angle.

Wherefore from the given point C, in the given straight line AB,
JFChas been drawn at right angles to AB. Q.E.F.

Cor. By help of this problem, it may be demonstrated that two
straight lines cannot have a common segment.

If it be possible, let the segment AB be common to the two straight

line? ABC, ABB.

A B C

From the point B, draw BE at right angles to AB
;

(i. 11.)

then because ABC is a straight line,

therefore the angle ABE is equal to the angle EBC. (def. 10.)

Similarly, because ABB is a straight line,

therefore the angle ABE is equal to the angle EBB
;

but the angle ABE is equal to the angle EBC,
wherefore the angle EBB is equal to the angle EBC, (ax. 1.)

the less equal to the greater angle, which is impossible.

Therefore two straight lines cannot have a common segment.

PROPOSITION XII. PROBLEM.
To draw a straight line perpendicular to a given straight hne of x'A*

limited length, from a given point without it*
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Let AB be the given straight line, which may be produced any

length both ways, and let C be a point without it.

It is required to draw a straight line perpendicular to AB from the

point C.

Upon the other side of AB take any point D,
and from the center C, at the distance CD, describe the circle EGF

meeting AB, produced if necessary, in F and G : (post. 3.)

bisect FG in H (I. 10.), and join C1L
Then the straight line CH drawn from the gh en point C, shall be

perpendicular to the given straight line AB.
Join FC, and CG.

Because FIT is equal to JIG, (constr.)

and HCis common to the triangles FHC, GHC;
the two sides FH, HC, are equal to the two GH, HC, each to each

;

and the base CF\$ equal to the base CG
;
(def. 15.)

therefore the angle FHC is equal to the angle GHC; (I. 8.)

and these are adjacent angles.

But when a straight line standing on another straight line, makes
the adjacent angles equal to one another, each of them is a right angle,

and the straight line which stands upon the other is called a perpen-

dicular to it. (def. 10.)

Therefore from the given point C, a perpendicular CH has been
drawn to the given straight line AB. q.e.f.

PROPOSITION XIII. THEOREM.

The angles which one straight line makes with another upon one side of
it, are either two right angles, or are together equal to two right angles.

Let the straight line AB make with CD, upon one side of it, the

angles CBA, ABB.
Then these shall be either two right angles,

or, shall be together, equal to two right angles.

E
A A

For if the angle CBA be equal to the angle ABB,
each of them is a right angle, (def. 10.)

But if the angle CBA be not equal to the angle ABB,
from ths point B draw BE at right angles to CD. (I. 11.)

Then the angles CBE, EBB are two right angles, (def. 10.)
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And because the angle CBE is equal to the angles CBA, ABE,
add the angle EBD to each of these equals

;

therefore the angles CBE, EBD are equal to the three angles CBA,
ABE, EBD. (ax. 2.)

Again, because the angle DBA is equal to the two angles DBE, EBA,
add to each of these equals the angle ABC;

therefore the angles DBA, ABC are equal to the three angles DBE,
EBA, ABC.

But the angles CBE, EBD have been proved equal to the same
three angles

;

and things which are equal to the same thing are equal to one another

;

therefore the angles CBE, EBD are equal to the angles DBA, ABC',
but the angles CBE, EBD are two right angles

;

therefore the angles DBA,ABCare together equal to two right angles,

(ax. 1.)

"Wherefore, when a straight line, &c. Q.E.D.

PROPOSITION XIV. THEOREM.
If at a point in a straight line, two otner straight lines, upon the opposite

sides of it, make the adjacent angles together equal to two right angles ; then

these two straight lines shall be in one and the same straight line.

At the point B in the straight line AB, let the two straight lines

BC,BD upon the opposite sides of AB, make the adjacent angles

ABC, ABD together equal to two right angles.

Then BD shall be in the same straight line with B C.

A

__E

I)

For, if BD be not in the same straight line with B C,

if possible, let BE be in the same straight line with it.

Then because AB meets the straight line CBE;
therefore the adjacent angles CBA,ABE are equal to two right angles

;

(I. 13.)

but the angles CBA, ABD are equal to two right angles
;
(hyp.)

therefore the angles CBA, ABE are equal to the angles CBA, ABD:
(ax. 1.)

take away from these equals the common angle CBA,
therefore the remaining angle ABE is equal to the remaining angle

ABD; (ax. 3.)

the less angle equal to the greater, which is impossible

:

therefore BE is not in the same straight line with BC.
And in the same manner it may be demonstrated, that no other

can be in the same straight line with it but BD, which therefore is in

the same straight lino with BC.
Wherefore, if at a point, &c, q.e.d.
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PROPOSITION XV. THEOREM.
If two straight lines cut one another, the vertical, or opposite angles

shall be equal.

Let the two straight lines AB, CD cut one another in the point E.
Then the angle AEC shall be equal to the angle DEB, and the

angle CEB to the angle AED.
C

Because the straight line AE makes with CD at the point I?, the

adjacent angles CEA, AED;
these angles are together equal to two right angles. (I. 13.)

. Again, because the straight lineDE makes withAB at the point E,
the adjacent angles AED, DEB

;

these angles also are equal to two right angles

;

but the angles CEA, AED have been shewn to be equal to two right

angles
;

wherefore the angles CEA, AED are equal to the angles AED, DEB :

take away from each the common angle AED,
and the remaining angle CEA is equal to the remaining angle DEB.
(ax. 3.)

In the same manner it may be demonstrated, that the angle CEB
is equal to the angle AED.

Therefore, if two straight lines cut one another, &c. Q.E.D.

Cor. 1. From this it is manifest, that, if two straight lines cut each
other, the angles which they make at the point where they cut, are

together equal to four right angles.

Cor. 2. And consequently that all the angles made by any num-
ber of lines meeting in one point, are together equal to four right

angles.

PROPOSITION XVI. THEOREM.
If one side of a triangle be produced, the exterior angle is greater than

either of the interior opposite angles.

Let ABC be a triangle, and let the side _5Cbe produced to D.
Then the exterior angle ACD shall be greater than either of the

interior opposite angles CBA or BA C.

Bisect AC in E, (l. 10.) and join BE;
product BE to F, making EF equal to BE, (i. 3.) and join FC.
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Because AE is equal to EC, and BE to EF; (constr.)

the two sides AE, EB are equal to the two CE, EF, each to each, in

the triangles ABE, CFE;
and the angle AEB is equal to the angle CEF,

because they are opposite vertical angles; (i. 15.)

therefore the base AB is equal to the base CF, (I. 4.)

and the triangle AEB to the triangle CEF,
and the remaining angles of one triangle to the remaining angles of

the other, each to each, to which the equal sides are opposite

;

wherefore the angle BAE is equal to the angle ECF;
but the angle ECB or ACD is greater than the angle ECF;

therefore the angle ACD is greater than the angle BAE or BAG,
In the same manner, if the side BC be bisected, and A Che pro-

duced to G ; it may be demonstrated that the angle B CG, that is, the

angle ACD, (I. 15.) is greater than the angle ABC.
Therefore, if one side of a triangle, &c. Q.E.D.

PROPOSITION XVII. THEOREM.
Any two angles of a triangle are together less than two right angles.

Let ABC he any triangle.

Then any two of its angles together shall be less than two right angles.

A

Produce any side BC to D.
Then because A CD is the exterior angle of the triangle ABC)

therefore the angle A CD is greater than the interior and opposite angle

ABC; (I. 16.)

to each of these unequals add the angle A CB

;

therefore the angles ACD, ACB are greater than the angles ABC,
ACB;
but the angles ACD, ACB are equal to two right angles

;
(i. 13.)

therefore the angles AB C, A CB are less than two right angles.

In like manner it may be demonstrated,

that the angles BA C, A CB are less than two right angles,

as also the angles CAB, ABC.
Therefore any two angles of a triangle, &c. Q.E.D.

PROPOSITION XVIII. THEOREM.

The greater side of every triangle is opposite to the greater angle

Let ABCb& a triangle, of which the side AC is greater than

side AS.
-hi
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Then the angle ABC shall be greater than the angle ACB.

A

Since the side A C is greater than the side AB, (hyp,)

make AD equal to AB, (i. 3.) and join BD.
Then, because AD is equal to AB, in the triangle ABD.

therefore the angle ABD is equal to the angle ADB, (i. 5.)

but because the side CD of the triangle BDC is produced to A,
therefore the exterior angle ADB is greater than the interior and

opposite angle DCB; (I. 16.)

but the angle ADB has been proved equal to the angle ABD,
therefore the angle ABD is greater than the angle DCB;

wherefore much more is the angle AB

C

greater than the angle ACB.
Therefore the greater side, &c. Q. E. D.

PROPOSITION XIX. THEOREM.
The greater angle of every triangle is subtended by the greater side, or,

has the greater side opposite to it.

Let ABC be a triangle of which the angle ABC is greater than the

angle JBCA.
Then the side A C shall be greater than the side AB.

For, if A C be not greater than AB,
A

C

must either be equal to, or less than AB;
ifAC were equal to AB,

then the angle ABC would be equal to the angle ACB
;

(i. 5.)

but it is not equal
;
(hyp.)

therefore the side AC is not equal to AB.
Again, if AC were less than AB,

then the angle ABC would be less than the angle ACB; (l. 18.)

but it is not less, (hyp.)

therefore the side AC is not less than AB

;

and A C has been shewn to be not equal to AB

;

therefore A C is greater than AB.
Wherefore the greater angle, &c. Q. E. D.

PROPOSITION XX. THEOREM.
Any two tides of a triangle are together greater than the third side.

Let ABC he a triangle.

Then any two sides of it together shall be greater than the third side,

viz. the sides BA, A C greater than the side BC;



EUCLID S ELEMENTS.

AB, BC greater than AC\
and BC, CA greater than AB.

Produce the side BA to the point D,
make AD equal to AC, (I. 3.) and join DC.
Then because ^4D is equal to A C, (constr.)

therefore the angle A CD is equal to the angle ADC; (I. 5.)

but the angle BCD is greater than the angle A CD
;

(ax. 9.)

therefore also the angle BCD is greater than the angle ADC.
And because in the triangle DB C,

the angle BCD is grea/ter than the angle BD C,

and that the greater angle is subtended by the greater side
;

(I. 19.)

therefore the side DB is greater than the side BC;
but DB is equal to BA and A C,

therefore the sides BA and AC axe greater than BC.
In the same manner it may be demonstrated,

that the sides AB, BC are greater than CA
j

also that BC, CA are greater than AB.
Therefore any two sides, &c. Q. E. D.

PROPOSITION XXI. THEOREM.
If from the ends of a side of a triangle, there be dratcn two straight

lines to a point within the triangle ; these shall be less than the other two
sides of the triangle, but shall contain a greater angle.

Let ABC he a triangle, and from the points B, C, the ends of the

side BC, let the two straight lines BD, CD be drawn to a point D
within the triangle.

Then BD and DC shall be less than BA and AC the other two
sides of the triangle,

but shall contain an angle BD

C

greater than the angle BAC.
A

Produce BD to meet the side A C in E.
Because two sides of a triangle are greater than the third side, (I. 20.)

therefore the two sides BA, AE of the triangle ABE are greater

than BE;
to each of these unequals add EC;

therefore the sides BA, AC are greater than BE, EC. (ax. 4.)

Again, because the two sides CE, ED of the triangle CED are

greater than DC; (i. 20.)

add DB to each of these unequals

;
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therefore the sides CE, EB are greater than CD, EB. (ax. 4.)

But it has been shewn that BA, AC are greater than BE, EC;
much more then are BA, AC greater than BE, EC.

Again, because the exterior angle of a triangle is greater than the

interior and opposite angle
;

(I. 16.)

therefore the exterior angle BEC of the triangle CEE is graeter

than the interior and opposite angle CEE

;

for the same reason, the exterior angle CEE of the triangle ABE
is greater than the interior and opposite angle BAC-,

and it has been demonstrated,

that the angle BECis greater than the angle CEB

;

much more therefore is the angle BEC greater than the angle BAC.
Therefore, if from the ends of the side, &c. Q. E. D.

PROPOSITION XXII. PROBLEM.
To make a triangle of which the sides shall be equal to three given

straight lines, but any two whatever of these must be greater than the third.

Let A, B, Che the three given straight lines,

of which any two whatever are greater than the third, (I. 20.)

namely, A and B greater than C;
A and C greater than B

;

and B and C greater than A.
It is required to make a triangle of which the sides shall be equal

to A, B, C, each to each.

Take a straight line EE terminated at the point E, but unlimited

towards E,
make EF equal to A, FG equal to B, and GH equal to C; (i. 3.)

from the center F, at the distance FE, describe the circle EKL,
{post 3.)

from the center G, at the distance GH, describe the circle HLK ;

<rom K where the circles cut each other,draw KF, KG to the points

F,G;
Then the triangle KFG shall have its sides equal to the three

straight lines A, B, C.

Because the point F is the center of the circle EKL,
therefore FE is equal to FK-, (def. 15.)

but FE is equal to the straight line A
;

therefore FK is equal to A.
Again, because G is the center of the circle HKL,

therefore GH is equal to GK, (def. 15.)

but GH is equal to C;
therefore also 6riTis equal to C; (ax. 1.)

and FG is equal to B
;
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therefore the three straight lines KF, FG, GK, are respectively
equal to the three, A, B, C:

and therefore the triangle KFG has its three sides KF, FG, GK,
equal to the three given straight lines A, B, C. Q.E.F.

PROPOSITION XXIII. PROBLEM.

At a given point in a given straight line, to make a rectilineal angle
equal to a given rectilineal angle.

Let AB be the given straight line, and A the given point in it,

and DCE the given rectilineal angle.

It is required, at the given point A in the given straight line AB, to

make an angle that shall be equal to the given rectilineal angle DCE.

r
B

In CD, CE, take any points D, F, and join DE;
on AB, make the triangle AFG, the sides of which shall be equal

to the three straight lines CD, DF, EC, so that AF be equal to

CD, AG to CE, and FG to DE. (i. 22.)

Then the angle FAG shall be equal to the angle DCE.
Because FA, AG are equal to DC, CE, each to each,

and the base FG is equal to the base DE;
therefore the angle FAG is equal to the angle DCE. (I. 8.)

Wherefore, at the given point A in the given straight line AB, the

angle FAG is made equal to the given rectilineal angle D CE. Q.E.y.

PROPOSITION XXIV. THEOREM.
If two triangles have two sides of the one equal to two sides of the other,

each to each, but the angle contained by the two sides of one of them greater

than the angle contained by the two sides equal to them, of the other ; the

base of that which has the greater angle, shall be greater than the base

of the other.

~LetABC, DEFhe two triangles, which have the two sides AB,
A C, equal to the two DE, DF, each to each, namelv, AB equal to

DE, and A (7to DF; but the angle BA C greater than the angle EDF.
Then the base BC shall be greater than the base EF.
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Of the two sides DE, DF, let DE be not greater than DF,
at the point D, in the line DE, and on the same side of it as DF,

make the angle EDG equal to the angle BAC; (I. 23.)

make EG equal to DF or AC, (I. 3.) and join EG, GF.
Then, because DE is equal to AB, and DG to AC,

the two sides Di?, D6r are equal to the two AB, AC, each to each,

and the angle EDG is equal to the angle BAG;
therefore the base EG is equal to the base BC. (I. 4.)

And because DG is equal to DF in the triangle DFG,
therefore the angle DFG is equal to the angle DGF; (i. 5.)

but the angle DGF is greater than the angle EGF; (ax. 9.)

therefore the angle DFG is also greater than the angle EGF;
much more therefore is the angle EFG greater than the angle EGF.

And because in the triangle EFG, the angle EFG is greater than

the angle EGF,
and that the greater angle is subtended by the greater side

;
(i. 19.)

therefore the side EG is greater than the side EF\
but EG was proved equal to BC;
therefore BC is greater than EF.

Wherefore, if two triangles, &c. Q.E.D.

PROPOSITION XXV. THEOREM.

If two triangles have txco sides of the one equal to two sides of the other,

each to each, but the base of one greater than the base of the other ; the

angle contained by the sides of the one which has the greater base, shall be

greater than the angle contained by the sides, equal to them, of the other.

Let ABC, DEFhe two triangles which have the two sides AB, A C,

equal to the two sides DE, DF, each to each, namely, AB equal to

DE, and AC to DF; but the base BC greater than the base EF.
Then the angle BA C shall be greater than the angle EDF.

For, if the angle BA C be not greater than the angle EDF,
it must either be equal to it, or less than it.

If the angle BA C were equal to the angle EDF,
then the base BC would be equal to the base EF; (I. 4.)

but it is not equal, (hyp.)

therefore the angle BAC is not equal' to the angle EDF.
Again, if the angle BAC were less than the angle EDF,

then the base BC would be less than the base EF; (I. 24.)

but it is not less, (hyp.)

therefore the angle BAG is not less than the angle EDF;
and ithas been shewn, that the angleBA C is not equal to the angleEDF :

therefore the angle BA C is greater than the angle EDF.
Wherefore, if two triangles, &c. q.e.d.
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PEOPOSITION XXYL THEOEEM.

If two triangles have two angles of the one equal to two angles of tin

other, each to each, and one side equal to one side, viz. either the sides adja-

cent to the equal angles in each, or the sides opposite to them ; then shall the

other sides be equal, each to each, and also the third angle of the one equal

to the third angle of the other.

Let ABO, DEF be two triangles which have the angles ABO,
BOA, equal to the angles DEF, EFD, each to each, namely, ABC
to DEF, and BOA to EFD; also one side equal to one side.

First, let those sides be equal which are adjacent to the angles that

are equal in the two triangles, namely, BO to EF.
Then the other sides shall be equal, each to each, namely, AB to

DE, and AG to DF}
and the third angle BAG to the third angle EDF.

For, if AB be not equal to DE,
one of them must be greater than the other.

If possible, let AB be greater than DE,
make BQ equal to ED, (i. 3) and join GO.
Then in the two triangles GBO, DEF,

because GB is equal to DE, and BO to EF, (hyp.)

the two sides, GB, BO are equal to the two DE, EF, each to each

;

and the angle GBO is equal to the angle DEF;
therefore the base GO is equal to the base DF, (i. 4.)

and the triangle GBO to the triangle DEF,
and the other angles to the other angles, each to each, to which

the equal sides are opposite

;

therefore the angle GOB is equal to the angle DFE;
but the angle ACB is, by the hypothesis, equal to the angle DFE;
wherefore also the angle GOB is equal to the angle ACB; (ax. 1.)

the less angle equal to the greater, which is impossible

;

therefore AB is not unequal to DE,
that is, AB is equal to DE.

Hence, in the triangles ABO, DEF;
because AB is equal to DE, and BO to EF, (hyp.)

and the angle ABO is equal to the angle DEF; (hyp.)

therefore the base AO is equal to the base DF, (i. 4.)

and the third angle BA to the third angle EDF.
Secondly, let the sides which are opposite to one of the equal angles

in each triangle be equal to one another, namely AB equal to DE.
Then in this case likewise the other sides shall be equal, AC to DF,

and BO to EF and also the third angle BAG to the third angle EDF.
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a D

A
For if BC be not equa] to EF,

one of them must be greater than the other.

If possible, let BCbe greater than EF;
make BH equal to EF, (i. 3.) and join AH.
Then in the two triangles ABH, DEF,

because AB is equal to DE, and BH to EF,
and the angle ABH to the angle DEF; (hyp.)

therefore the base AH is equal to the base DF, (I. 4.)

and the triangle ABH to the triangle DEF,
and the other angles to the other angles, each to each, to which the

equal sides are opposite

;

therefore the angle BHA is equal to the angle EFD;
but the angle EFD is equal to the angle BCA

;
(hyp.)

therefore the angle BHA is equal to the angle BCA, (ax. 1.)

that is, the exterior angle BHA of the triangle AHC, is

equal to its interior and opposite angle BCA

;

which is impossible
;

(i. 16.)

wherefore BC is, not unequal to EF,
that is, BCis, equal to EF.

Hence, in the triangles ABC, DEF;
because AB is equal to DE, and BC to EF, (hyp.)

and the included angle ABCis equal to the included angle DEF; (hyp.)

therefore the base A C is equal to the base DF, (I. 4.)

and the third angle BA C to the third angle EDF.
Wherefore, if two triangles, &c. Q. E. D.

PROPOSITION XXVII. THEOREM.
If a straight line falling on two other straight lines, make the alternate

angles equal to each other ; these two straight lines shall be parallel.

Let the straight line EF, which falls upon the two straight lines

AB, CD, make the alternate angles AEF, EFD, equal to one anothei.

Then AB shall be parallel to CD.

For, if AB be not parallel to CD,
then AB and CD being produced will meet, either towards A and C

s

or towards B and D.
Let AB, CD be produced and meet, if possible, towards B and D,

in the point G,
then GEFis a triangle.
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And because a side GE of the triangle GEFh produced to A,
therefore its exterior angle AEF is greater than the interior and

opposite angle EFG
;

(i. 16.)

but the angle AEF is equal to the angle EFG
;
(hyp.)

therefore the angle AEF is greater than, and equal to, the angle

EFG ; which is impossible.

Therefore AS, CD being produced, do not meet towards B, D.
In like manner, it may be demonstrated, that they do not meet

when produced towards A, C.

But those straight lines in the same plane, which meet neither way,
though produced ever so far, are parallel to one another

;
(def. 35.)

therefore AB is parallel to CD.
Wherefore, if a straight line, &c. Q. E. D.

PROPOSITION XXVIII. THEOREM.
If a straight line falling upon two other straight lines, make the exterior

cngle equal to the interior and opposite upon the same side of the line ; or

make the interior angles upon the same side together equal to two right

angles ; the Uco straight lines shall be parallel to one another.

Let the straight line EF, which falls upon the two straight lines

AB, CD, make the exterior angle EGB equal to the interior and
opposite angle GHD, upon the same side of the line EF; or make
the two interior angles BGH, GHD on the same side together

eaual to two right angles.

Then AB shall be parallel to CD,

E

B
G

C

Because the angle EGB is equal to the angle GHD, (hyp.)

and the angle EGB is equal to the angle AGH, (i. 15.)

therefore the angle AGIf is equal to the angle GHD; (ax. 1.)

and they are alternate angles,

therefore AB is parallel to CD. (i. 27.)

Again, because the angles BGH, GHD are together equal to two
right angles, (hyp.)

and that the angles AGH, BGH are also together equal to two
right angles

;
(I. 13.)

therefore the angles AGH, BGH are equal to the angles BGH,
GHD-, (ax. 1.)

take away from these equals, the common angle BGH;
therefore the remaining angle A Gil is, equal to the remaining angle

GHD-, (ax. 3.)

and they are alternate angles
;

therefore AB is parallel to CD. (i. 27.)

Wherefore, if a straight line, &c. Q.E.D.
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PROPOSITION XXIX. THEOREM.

If a straight line fall upon two parallel straight lines, it makes the alter-'

note angles equal to one another ; and the exterior angle equal to the interior

and opposite upon the same side ; and likewise the two interior angles upon
the same side together equal to txoo right angles.

Let the straight line EF fall upon the parallel straight lines AB, CD.
Then the alternate angles A GH, GHD shall be equal to one another

;

the exterior angle EGB shall be equal to the interior and opposite

angle GHD upon the same side of the line EF;
and the two interior angles BGH, GHD upon the saooe side of EF

shall be together equal to two right angles.

A \
G

c

First. For, if the angle AGH be not equal to the alternate angle

GHD, one of them must be greater than the other

;

if possible, let AGH be greater than GHD,
then because the angle AGH is greater than the angle GHD,

add to each of these unequals the angle BGH;
therefore the angles AGH, BGH are greater than the angles BGH,

GHD; (ax. 4.)

but the angles AGH, BGH are equal to two right angles
;

(i. 13.)

therefore the angles BGH, GHD are less than two right angles
;

but those straight lines, which with another straight line falling upon
them, make the two interior angles on the same side less than two
right angles, will meet together if continually produced; (ax. 12.)

therefore the straight lines AB, CD, if produced far enough, will

meet towards B, D

;

but they never meet, since they are parallel by the hypothesis

;

therefore the angle AGH is not unequal to the angle GHD,
that is, the angle AGH is equal to the alternate angle GHD.

Secondly. Because the angleAGH is equal to the angle EGB, (i. 15.)

and the angle AGH is equal to the angle GHD,
therefore the exterior angle EGB is equal to the interior and opposite

angle GHD, on the same side of the line.

Thirdly. Because the angle EGB is equal to the angle GHD,
add to each of them the angle BGH;

therefore the angles EGB, BGHare equal to the angles BGH, GHD;
(ax. 2.)

but EGB, BGHare equal to two right angles
;

(i. 13.)

therefore also the two interior angles BGH, GHD on the same side

of the line are equal to two right angles, (ax. 1.)

"Wherefore, if a straight line
;
&c. Q.E.D.

c2
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PROPOSITION XXX. THEOREM.

Straight lines which are parallel to the same straight line are parallel tt

each other.

Let the straight lines AB, CD, be each of them parallel to EF.
Then shall AB be also parallel to CD.

A -
/Gr

—B
E

c A if

A
Let the straight line GHK cut AB, EF, CD.

Then because GHK cuts the parallel straight lines AB, EF, in

G,H>
therefore the angle AGH is equal to the alternate angle GHF. (i. 29.)

Again, because GHK cuts the parallel straight lines EF, CD, in

II, K;
therefore the exterior angle GHF is equal to the interior angle HKD

;

and it was shewn that the angle AGH is equal to the angle GHF
;

therefore the angle AGH is equal to the angle GKD

;

and these are alternate angles

;

therefore AB is parallel to CD. (i. 27.)

Wherefore, straight lines which are parallel, &c. Q.E.D.

PROPOSITION XXXI. PROBLEM.

To draw a straight line through a given point parallel to a given straight

line.

Let A be the given point, and BC the given straight line.

It is required to draw, through the point A, a straight line parallel

to the straight line BC.

In the line .BCtake any point D, and join AD;
at the point A in the straight line AD.

make the angle DAE equal to the angle ADC, (i. 23.) on the oppo-
site side ofAD

;

and produce the straight line EA to F.
Then EF shall be parallel to BC.

Because the straight line AD meets the two straight lines EF, BC,
Bed makes the alternate angles EAD, ADC, equal to one another,

therefore .E'.Fis parallel to BC. (I. 27.)

Wherefore, through the given point A, has been drawn a straight

line EAF parallel to the given straight, l|ne BC. q.e.f.
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PEOPOSITION XXXII. THEOREM.
If a side of any triangle be produced, the exterior angle is equal to the

two interior and opposite angles ; and the three interior angles of every
triangle are together equal to two right angles.

Let ABC be a triangle, and let one of its sides BChe produced to D.
Then the exterior angle AGD shall be equal to the two interior

and opposite angles CAB, ABC:
and the three mterior angles ABC, BCA 3 CAB shall be equal to

two right angles.

A E

B C D
Through the point C draw CE parallel to the side BA. (i. 31.)

Then because CE is parallel to BA, and AC meets them,

therefore the angle ACE is equal to the alternate angle BAG. (i. 29.)

Again, because CE is parallel to AB, and BD falls upon them,

therefore the exterior angle ECD is equal to the interior and op-

posite angle ABC-, (i. 29.)

but the angle ACE was shewn to be equal to the angle BAG;
therefore the whole exterior angle ACD is equal to the two interior

and opposite angles CAB, ABC. (ax. 2.)

Again, because the angle ACD is equal to the two angles ABC, BAG,
to each of these equals add the angle ACB,

therefore the angles ACD and ACB are equal to the three angles

ABC, BAG, and ACB. (ax. 2.)

but the angles ACD, ACB are equal to two right angles, (i. 13.)

therefore also the angles ABC, BAG, ACB are equal to two right

angles, (ax. 1.)

Wherefore, if a side of any triangle be produced, &c. q.e.d.

Cor. 1. All the interior augles of any rectilineal figure together

with four right angles, are equal to twice as many right angles as the

figure has sides.

D

Eor any rectilineal figure ABCDE can be divided into as many
triangles as the figure has sides, by drawing straight lines from a point

F within the figure to each of its angles.

Then, because the three interior angles of a triangle are equal to

two right angles, and there are as many triangles as the figure has sides,

therefore all the angles of these triangles are equal to twice as many
right angles as the figure has sides

;

but the same angles of these triangles are equal to the interior angles

of the figure together with the angles at the point F

:
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and the angles at the point F, which is the common vertex of all

the triangles, are equal to four right augles, (i. 15. Cor. 2.)

therefore the same angles of these triangles are equal to the angles

of the figure together with four right angles

;

but it has been proved that the angles of the triangles are equal to

twice as many right angles as the figure has sides

;

therefore all the angles of the figure together with four right angles,

are equal to twice as many right angles as the figure has sides.

Cor. 2. AH the exterior angles of any rectilineal figure, made by
producing the sides successively in the same direction, are together

equal to four right angles.

Since every interior angle ABC with its adjacent exterior angle

ABD, is equal to two right angles, (i. 13.)

therefore all the interior angles, together with all the exterior angles,

are equal to twice as many right angles as the figure has sides

;

but it has been proved by the foregoing corollary, that all the in-

terior angles together with four right angles are equal to twice as many
right angles as the figure has sides

;

therefore all the interior angles together with all the exterior angles,

are equal to all the interior angles and four right angles, (ax. 1.)

take from these equals all the interior angles,

therefore all the exterior angles of the figure are equal to four right

angles, (ax. 3.)

PEOPOSITION XXXIII. THEOEEM.
The straight lines which join the extremities of two equal and parallel

straight lines towards the same parts, are also themselves equal and parallel.

Let AB, CD be equal and parallel straight lines,

and joined towards the same parts by the straight lines AC, BD.
Then AC, BD shall be equal and parallel.

Join BC.
Then because AB is parallel to CD, and BC meets them,

therefore the angle ABC is equal to the alternate angle BCD; (i. 29.)

and because AB is equal to CD, and BC common to the two triangles

ABC, DCB; the two sides AB, BC, are equal to the two DC, CB, each

to each, and the angle ABC was proved to be equal to the angle BCD :

therefore the base A C is equal to the base BD, (i. 4.)

and the triangle ABC to the triangle BCD,
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and the other angles to the other angles, each to each, to which the

equal sides are opposite :

therefore the angle A CB is equal to the angle CBD.
And because the straight line BC meets the two straight lines AC,

BD, and makes the alternate angles A CB, CBD equal to one another;

therefore ^Cis parallel to BD
;

(i. 27.)

and A C was shewn to be equal to BD.
Therefore, straight lines which, &c. Q.E.D.

PROPOSITION XXXIV. THEOREM.

The opposite sides and angles of a parallelogram are equal to one another,

end the diameter bisects it, that is, divides it into two equal parts.

Let ACDB be a parallelogram, of which i?C is a diameter.

Then the opposite sides and angles of the figure shall be equal to

one another : and the diameter BC shall bisect it.

Because AB is parallel to CD, and BC meets them,

therefore the angle ABC is equal to the alternate angle RCD. (1.29.)

And because AC is parallel to BD, and BC meets them,

therefore the angle ACB is equal to the alternate angle CBD. (I. 290
Hence in the two triangles ABC, CBD,

because the two angles ABC, BCA in the one, are equal to the two
angles BCD, CBD in the other, each to each;

and one side BC, which is adjacent to their equal angles, common to

the two triangles

;

therefore their other sides are equal, each to each, and the third angle

of the one to the third angle of the other, (i. 26.)

namely, the side AB to the side CD, and AC to BD, and the angle

BA C to the angle BD C.

And because the angle ABC is equal to the angle BCD,
and the angle CBD to the angle A CB,

therefore the whole angle ABD is equal to the whole angleA CD
j

(ax. 2.)

and the angle BAC has been shewn to be equal to BDC;
therefore the opposite sides and angles of a parallelogram are equal to

one another.

Also the diameter BC bisects it.

For since AB is equal to CD, andBC common, the two sides AB,
B C, are equal to the two D C, CB, each to each,

and the angle ABC has been proved to be equal to the angle BCD
;

therefore the triangle ABC is equal to the triangle BCD
; (1. 4.) and

the diameter BC divides the parallelogram A CDB into two equal parts.

Q.E.D.
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PROPOSITION XXXV. THEOREM.
Parallelograms upon the same base, and between the same parallels, are

equal to one another.

Let the parallelogramsABCD, JEBCF be upon the same base BC
and between the same parallels AF, BC.

Then the parallelogramABCD shall be equal to the parallelogram
EBCF.AD F A DE F A E D F

If the sides AD, DFof the parallelograms ABCD, DBCF, opposite

to the base BC, be terminated in the same point D;
then it is plain that each of the parallelograms is double of the triangle

BDC; (I. 34.)

and therefore the parallelogram ABCD is equal to the parallelogram

DBCF. (ax. 6.)

But if the sides AD, FF, opposite to the base BC, be not termi-

nated in the same point

;

Then, because ABCD is a parallelogram,

therefore AD is equal to BC; (I. 34.)

and for a similar reason, FFis equal to BC;
wherefore AD is equal to EF; (ax. 1.)

and DF is common
;

therefore the whole, or the remainder AF, is equal to the whole, or

the remainder DF
;
(ax. 2 or 3.)

and AB is equal to DC; (i. 34.)

hence in the triangles FAB, FD C,

because FD is equal to FA, and DC to AB,
and the exterior angle FDC is equal to the interior and opposite angle

FAB
;
(i. 29.)

therefore the base FC is equal to the base FB, (I. 4.)

and the triangle FDC'is equal to the triangle FAB.
From the trapezium ABCFtake the triangle FDC,
and from the same trapezium take the triangle FAB,

and the remainders are equal, (ax. 3.)

therefore the parallelogramABCD is equal to the parallelogram^^CF.
Therefore, parallelograms upon the same, &c. Q. E. D.

PROPOSITION XXXVI. THEOREM.
Parallelograms upon equal bases and between the same parallels, are

equal to one another.

Let ABCD, FFGHbe parallelograms upon equal bases BC, FG,
find between the same parallels AH, BG.

Then the parallelogram ABCD shall be equal to the parallelogram

EFGH.
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A D E H

B c f a

Join BE, CH.
Then because .BCis equal to FG, (hyp.) and FG to EH, (I. 34.)

therefore BCis equal to EH; (ax. 1.)

g.nd these lines are parallels, and joined towards the same parts by the

-straight lines BE, CII;

but straight lines which join the extremities of equal and parallel

Straight lines towards the same parts, are themselves equal and parallel

;

(I. 33.)

therefore BE, CH are both equal and parallel

;

wherefore EBCHh a parallelogram, (def. A.)

And because the parallelograms ABCD, EBCH, are upon the

same base BC, and between the same parallels BC, AH;
therefore the parallelogram ABCD is equal to the parallelogram

EBCH. (i. 35.)

For the same reason, the parallelogram EFGH is equal to the

parallelogram EBCH;
therefore the parallelogram ABCD is equal to the parallelogram

EFGH. (ax. 1.)

Therefore, parallelograms upon equal, &c. Q.E.D.

PROPOSITION XXXVII. THEOREM.
Triangles upon the same base and beticee?i the same parallels, are equal to

cne another.

Let the triangles ABC, DBChe upon the same base BC,
and between the same parallels AD, BC.

Then the triangle ABC shall be equal to the triangle DBC.
E A D F

Produce AD both ways to the points E, F;
through B draw BE parallel to CA, (I. 31.)

and through C draw CF parallel to BD.
Then each of the figures EBCA, DBCF is a parallelogram;

and EBCA is equal to DBCF, (I. 35.) because they are upon the

same base BC, and between the same parallels BC, EF.
And because the diameter AB bisects the parallelogram EBCA,

therefore the triangleABC is half of the parallelogram EBCA
;

(i. 34.)

also because the diameter DC bisects the parallelogram DB CF,
therefore the triangle DBC is half of the parallelogram DBCF,

but the halves of equal things are equal
;

(ax. 7.)

therefore the triangle ABCis equal to the triangle DBC.
"Wherefore, triangles &c, Q.E.D.

c5
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PROPOSITION XXXVIII. THEOREM.
Triangles upon equal bases and between the same parallels, arc equzl

to one another.

Let the triangles ABC, DEF be upon equal bases BC, EF, and
between the same parallels BF, AD.

Then the triangle ABC shall be equal to the triangle DEF.
G A D H

Produce AD both ways to the points G, H;
through B draw BG parallel to CA, (i. 31.)

and through F draw FH parallel to ED.
Then each of the figures GBCA, DEFH is a parallelogram;

and they are equal to one another, (i. 36.)

because they are upon equal bases BC, EF,
and between the same parallels BF, GH.

And because the diameter AB bisects the parallelogram GBCA,
therefore the triangle ABCis the half of the parallelogram GBCA

;

(I. 34.)

also, because the diameter DF bisects the parallelogram DEFH,
therefore the triangle DEF is the half of the parallelogram DEFILx

but the halves of equal things are equal
;
(ax. 7.)

therefore the triangle ABC is equal to the triangle DEF.
Wherefore, triangles upon equal bases, &c. Q.E.D.

PROPOSITION XXXIX. THEOREM.
Equal triangles upon the same base and upon the same side of it, are

between the same parallels.

Let the equal triangles ABC, DBC be upon the same base BC
and upon the same side of it.

Then the triangles ABC, DBC shall be between the same parallels.

Join AD -, then AD shall be parallel to BC.
For ifAD be not parallel to BC,

if possible, through the point A, draw AE parallel to BC, (I. 31

J

meeting BD, or BD produced, in E, and join EC.
Then the triangle ABC is equal to the triangle EBC, (I. 37.)

because they are upon the same base BC,
and between the same parallels BC, AE:

but the triangle ABCis equal to the triangle DBC; (hyp.)

therefore the triangle DBC is equal to the triangle EBC,
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the greater triangle equal to the less, which is impossible

:

therefore AE is not parallel to B C.

In the same manner it can be demonstrated,
that no other line drawn from A but AD is parallel to BC;

AD is therefore parallel to BC.
Wherefore, equal triangles upon, &c. Q. E. D.

PROPOSITION XL. THEOREM.
Equal triangles upon equal bases in the same straight line, and towards

the same parts, are between the same parallels

.

Let the equal triangles ABC, DEFhe upon equal bases BC, EF,
in the same straight line BF, and towards the same parts.

Then they shall be between the same parallels.

A D

Join AD ; then AD shall be parallel to BF.
For ifAD be not parallel to BF,

if possible, through A draw AG parallel to BF, (I. 31.)

meeting ED, or ED produced in G, and join GF.
Then the triangle AB C is equal to the triangle GEF, (i. 38.)

because they are upon equal bases BC, EF,
and between the same parallels BF, A G

;

but the triangle ABC is equal to the triangld DEF; (hyp.)

therefore the triangle DEF is equal to the criangle GEF, (ax. 1.)

the greater triangle equal to the less, which is impossible

:

therefore AG is no* parallel to BF.
And in the same manner it can be demonstrated,

that there is no other line arawn from A parallel to it but AD;
AD is therefore parallel to BF.

Wherefci e, equal triangles upon, &c. Q. E. D.

PROPOSITION XLL THEOREM.
If a parallelogram and c triangle be upon the same base, alK between

tA*> same parallels ; the parallelogram shall be double of the triangle.

Let the parallelogram ABCD, and the triangle EBC be upon the

same base BC, and between the same parallels BC, AE.
Then the parallelogramABCD shall be double of the triangle EBC

A D E

B C

Join A C.

Then the triangle ABC is equal to the triangle EBC, (1. 8T.)
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because they are upon the same base BC, and between the same
parallels BC, AE.

But the parallelogram ABCD is double of the triangle ABC,
because the diameter A

C

bisects it; (i. 34.)

wherefore ABCD is also double of the triangle EBC.
Therefore, if a parallelogram and a triangle, &c. Q. E. D.

PROPOSITION XLII. PROBLEM.

To describe a parallelogram that shall be equal to a given triangle, and
ave one of its angUs equal to a given rectilineal angle.

Let ABC he the given triangle, and D the given rectilineal angle.

It is required to describe a parallelogram that shall be equal to the
given triangle ABC, and have one of its angles equal to D,

A F • g

L
Bisect BC in E, (i. 10.) and join AE;
at the point E in the straight line EC,

make the angle CEF equal to the angle D; (I. 23.)

through C draw CG parallel to EF, and through A draw AFO
parallel to BC, (I. 31.) meeting EF in F, and CG in G.

Then the figure CEFG is a parallelogram, (def. A.)

And because the triangles ABE, AEC are on the equal bases BE,
EC, and between the same parallels BC, AG;

they are therefore equal to one another; (I. 38.)

and the triangle ABC is double of the triangle AEC;
hut the parallelogram FECG is double of the triangle AEC, (i. 41.)

because they are upon the same base EC, and between the same
parallels EC, A G;

therefore the parallelogram FECG is equal to the triangleAB C, (ax. 6.)

and it has one of its angles CEF equal to the given angle D.
Wherefore, a parallelogram FECG has been described equal to the

given triangle ABC, and having one of its angles CEF equal to the

given angle J), q.e.f.

PROPOSITION XLIII. THEOREM.

The complements of the parallelograms, which are about the diameter

of any parallelogram, are equal to one another.

Let ABCD be a parallelogram, of which the diameter is AC: and
EH,GF'the parallelograms about^i C, that is, through ichichACpasses:

also BK, KD the other parallelograms which make up the whole
figure ABCD, which are therefore called the complements.

Then the complement BK shall be equal to the complement KD.
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Because ABCD is a parallelogram, and A Cits diameter,

therefore the triangle ^i?C is equal to the triangle ADC. (I. 34.)

Again, because EKHA is a parallelogram, and AK its diameter,

therefore the triangle AEK is equal to the triangle AHK; (i. 34.)

and for the same reason, the triangle KGCis equal to the triangle KFC.
Wherefore the two triangles AEK, KGC are equal to the two

triangles AHK, KFC, (ax. 2.)

but the whole triangle ABC is equal to the whole triangle ADC;
therefore the remaining complement BK is equal to the remaining

complement KD. (ax. 3.)

Wherefore the complements, &c. Q.E.D.

PROPOSITION XL1V. PROBLEM.
To a given straight line to apply a parallelogram, which shall be equal

to a given triangle, and have one of its angles equal to a given rectilineal

angle.

Let AB be the given straight line, and Cthe given triangle, and D
the given rectilineal angle.

It is required to apply to the straight line AB, a parallelogram

equal to the triangle C, and having an angle equal to the angle D.
F E K

Make the parallelogram BEFG equal to the triangle C,

and having the angle EBG equal to the angle D, (i. 42.)

so that BE be in the same straight line with AB
;

produce FG to H,
through A draw AH parallel to BG or EF, (i. 31.) and join HB.

Then because the straight line HF falls upon the parallels AH, EF,
therefore the angles AHF, HFE are together equal to two right

angles
;

(I. 29.)

wherefore the angles BHF, HFE are less than two right angles

:

but straight lines which with another straight line, make the two
interior angles upon the same side less than two right angles, do meet
if produced far enough : (ax. 12.)

therefore HB, FE shall meet if produced

;

let them be produced and meet in K,
through K draw KL parallel to EA or FH,

and produce HA, GB to meet KL in the points L, 3f.

Then HLKFh a parallelogram, of which the diameter is HK\
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and AG, ME, are the parallelograms about HK;
also LB, BF are the complements

;

therefore the complement LB is equal to the complement BF; (1.43.)

but the complement BF is equal to the triangle C; (constr.)

wherefore LB is equal to the triangle C.

And because the angle GBE is equal to the angle ABM, (i. 15.)

and likewise to the angle D: (constr.)

therefore the angle AB31 is, equal to the angle D. (ax. 1.)

Therefore to the given straight line AB, the parallelogram LB has

be n applied, equal to the triangle C, and having the angle ABM
equal to the given angle D. Q.E.F.

PROPOSITION XLY. PROBLEM.
To describe a parallelogram equal to a given rectilineal figure, and

having an angle equal to a given rectilineal angle.

Let ABCD be the given rectilineal figure, and E the given recti-

lineal angle.

It is required to describe a parallelogram that shall be equal to the

figure ABCD, and having an angle equal to the given angle E.
D F G L

A

K H M
Join DB.

Describe the parallelogram FH equal to the triangle ADB, and
having the angle FKH equal to the angle E; (i. 42.)

to the straight line GH, apply the parallelogram GM equal to the

triangle BBC, having the angle GUM equal to the angle E.
(I. 44.)

Then the figure FK3IL shall be the parallelogram required.

Because each of the angles FKH, GHM, is equal to the angle E,
therefore the angle FKH is equal to the angle GHM-,

add to each of these equals the angle KHG :

therefore the angles FKH, KHG are equal to the angles KHG, GHM;
but FKH, KHG are equal to two right angles

;
(i. 29.)

therefore also KHG, GHM are equal to two right angles

;

and because at the point H, in the straight line GH, the two
straight lines KH, HM, upon the opposite sides of it, make the ad-

jacent angles KHG, GHM equal to two right angles,

therefore HK is in the same straight line with HM. (I. 14.)

And because the line HG meets the parallels KM, FG,
therefore the angle MHG is equal to the alternate angle HGF; (I. 29.)

add to each of these equals the angle HGL

;

therefore the angles MHG, HGL are equal to the angles HGF, HGL)
but the angles MHG, HGL are equal to two right angles

; (l. 29.)

therefore also the angles HGF, HGL are equal to two right angles,

and therefore FG h in the same straight line with GL. (I. 14.)
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And because KF is parallel to IIG, and HO to ML,
therefore KF is parallel to ML

;
(I. 30.)

and FL has been proved parallel to KM,
wherefore the figure FKML is a parallelogram

;

and since the parallelogram HF is equal to the triangle ABB,
and the parallelogram GM to the triangle BBC;

therefore the whole parallelogram KFLM is equal to the whole
rectilineal figure ABCB.

Therefore the parallelogram KFLM has been described equal to

the given rectilineal figure ABCB, having the angle FKM equal to

the given angle E. q.e.f.

Cor. From this it is manifest how, to a given straight line, to apply
a parallelogram, which shall have an angle equal to a given rectilineal

angle, and shall be equal to a given rectilineal figure ; viz. by applying
to the given straight line a parallelogram equal to the first triangle

ABB, (i. 44.) and having an angle equal to the given angle.

PROPOSITION XLVI. PROBLEM.
To describe a square upon a given straight line.

Let AB be the given straight line.

C

It is required to describe a square upon AB.
From the point A draw A C at right angles to AB

;
(I. 11.)

make AB equal to AB
; (j. 3.)

through the point B draw -D-Ej>arallel to AB
;

(I. 31.)

and through B, draw BE paralleTto AB, meeting BE in E;
therefore ABEB is a parallelogram

;

whence AB is equal to BE, and AB to BE; (I. 34.)

but AB is equal to AB,
therefore the four lines AB, BE, EB, BA are equal to one another,

and the parallelogram ABEB is equilateral.

It has likewise all its angles right angles

;

since AB meets the parallels AB, BE,
therefore the angles BAB, ABE are equal to two right angles

; (1.29.)

but BAB is a right angle
;
(constr.)

therefore also ABE is a right angle.

But the opposite angles of parallelograms are equal
;

(I. 34.)

therefore each of the opposite angles ABE, BEB is a right angle
j

wherefore the figure ABEB is rectangular,

and it has been proved to be equilateral

;

therefore the figure ABEB is a square, (def. 30.)

and it is described upon the given straight line AB. q.e.f.
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Coil. Hence, every parallelogram that has one of its angles aright

angle, has all its angles right angles.

PKOPOSITION XLVII. THEOREM.

In any right-angled triangle, the square which is described upon the side

sJelding the right angle, is equal to the squares descnbed upon the ndes

which contain the right angle.

Let ABChe a right-angled triangle, having the right angle BAC
Then the square described upon the side BC, shall be equal to the

squares described upon BA, AC.

On BC describe the square BDEC, (I. 46.)

and on BA, AC the squares GB HC-,
through A draw AL parallel to BD or CE; (I. 31.)

and join AD, FC.
Then because the angle BA C is a right angle, (hyp.)

and that the angle BA G is a right angle, (def. 30.)

the two straight lines AC, AG upon the opposite sides of AB, make
with it at the point A, the adjacent angles equal to two right angles

5

therefore CA is in the same straight line with AG*. (1. 14.)

For the same reason, BA and AH are in the same straight line.

And because the angle DBCis equal to the angle FBA,
each of them being a right angle,

add to each of these equals the angle ABC,
therefore the whole angle ABD is equal to the whole angle FBC. (ax.?.)

And because the two sides AB, BD, are equal to the two sides FB,
BC, each to each, and the included angleABD is equal to the included

angle FBC,
therefore the base AD is equal to the base FC, (I. 4.) •

and the triangle ABD to the triangle _FJ5C
Now the parallelogram BL is double of the triangle ABD, (I. 41.)

because they are upon the same base BD, and between the same
parallels BD, AL

;

also the square GB is double of the triangle FBC,
because these also are upon the same base FB, and between the

same parallels FB, GC.
But the doubles of equals are equal to one another

;
(ax. 6.)

therefore the parallelogram BL is equal to the square G3>'
Similarly, by joining AE, BK, it can be proved,

that the parallelogram CL is equal to the square HC.
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Therefore the whole square BBECis equal to the two squares GB,
BC; (ax. 2.)

and the square BDEC is described upon the straight line BC,
and the squares GB, HC, upon AB, AC:

therefore the square upon the side BC, is equal to the squares upon
the sides AB, AC.

Therefore, in any right-angled triangle, &c. Q.E.D.

PROPOSITION XLVIII. THEOREM.

If the square described upon one of the sides of a triangle, be equal to

the squares described upon the other two sides of it ; the angle contained by

tJuse two sides is a right angle.

Let the square described upon BC, one of the sides of the triangle

ABC. he equal to the squares upon the other two sides, AB, A C.

Then the angle BA C shall be a right angle.

D

From the point A draw AD at right angles to AC, (I. 11.)

make AD equal to AB, and join DC.
Then, because AD is equal to AB,

the square on AD is equal to the square on AB
;

to each of these equals add the square on AC;
therefore the squares on AD, A Care equal to the squares on AB, A C:

but the squares on AD, AC are equal to the square on DC, (I. 47.)

because the angle DA C is a right angle

;

and the square onB C,by hypothesis, is equal to the squares on BA,A C;

therefore the square on DC is equal to the square on BC;
and therefore the side DC is equal to the side B C.

And because the side AD is equal to the side AB,
and A C is common to the two triangles DA C, BA C;

the two sides DA, A C, are equal to the two BA, AC, each to each

:

and the base DC has, been proved to be equal to the base BC;
therefore the angle DACis equal to the angle BAG; (I. 8.)

but DA C is a right angle

;

therefore also BA C is a right angle.

Therefore, if the square described upon, &c. Q.E.D.
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ON THE DEFINITIONS.
Geometry is one of the most perfect of the deductive Sciences, and

seems to rest on the simplest inductions from experience and observation.

The first principles of Geometry are therefore in this view consistent

hypotheses founded on facts cognizable by the senses, and it is a subject

of primary importance to draw a distinction between the conception of

things and the things themselves. These hypotheses do not involve any
property contrary to the real nature of the things, and consequently cannot
be regarded as arbitrary, but in certain respects, agree with the concep-
tions which the things themselves suggest to the mind through the
medium of the senses. The essential definitions of Geometry therefore

being inductions from observation and experience, rest ultimately on the
evidence of the senses.

It is by experience we become acquainted with the existence of indi-

vidual forms of magnitudes ; but by the mental process of abstraction,

which begins with a particular instance, and proceeds to the general
idea of all objects of the same kind, we attain to the general conception
of those forms which come under the same general idea.

The essential definitions of Geometry express generalized conceptions
of real existences in their most perfect ideal forms : the laws and appear-

ances of nature, and the operations of the human intellect being sup-
posed uniform and consistent.

But in cases where the subject falls under the class of simple ideas,

the terms of the definitions so called, are no more than merely equivalent
expressions. The simple idea described by a proper term or terms, does
not in fact admit of definition properly so called. The definitions in

Euclid's Elements may be divided into two classes, those which merely
explain the meaning of the terms employed, and those, which, besides

explaining the meaning of the terms, suppose the existence of the things

described in the definitions.

Definitions in Geometry cannot be of such a form as to explain the

nature and properties of the figures defined : it is sufficient that they give

marks whereby the thing defined may be distinguished from every other

of the same kind. It will at once be obvious, that the definitions of

Geometry, one of the pure sciences, being abstractions of space, are not
like the definitions in any one of the physical sciences. The discovery

of any new physical facts may render necessary some alteration or modi-
fication in the definitions of the latter.

Def. i. Simson has adopted Theon's definition of a point. Euclid's

definition is, cni/miiov ia-nriv ov [Azpos ovoiv, " A point is that, ofwhich there

is no part," or which cannot be parted or divided, as it is explained by
Proclus. The Greek term <nifj.dov, literally means, a visible sign or mark
on a surface, in other words, a physical point. The English term point,

means the sharp end of any thing, or a mark made by it. The word
point comes from the Latin punctum, through the French word point.

Neither of these terms, in its literal sense, appears to give a very exact

notion of what is to be understood by a point in Geometry. Euclid's

definition of a point merely expresses a negative property, which excludes

the proper and literal meaning of the Greek term, as applied to denote a

physical point, or a mark which is visible to the senses. -

Pythagoras defined a point to be (xovd? 6z<riv txovaa >
" a monad having

position." By uniting the positive idea of position, with the negative
'/"3 of defect of magnitude, the conception of a point in Geometry may
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be rendered perhaps more intelligible. A point is denned to be that

which has no magnitude, but position only.

Def. ii. Every visible line has both length and breadth, and it is im-
possible to draw any line whatever which shall have no breadth. The
definition requires the conception of the length only of the line to be
considered, abstracted from, and independently of, all idea of its breadth.

Def. in. This definition renders more intelligible the exact meaning
of the definition of a point : and we may add, that, in the Elements,
Euclid supposes that the intersection of two lines is a point, and that two
lines can intersect each other in one point only.

Def. iv. The straight line or right line is a term so clear and intel-

ligible as to be incapable of becoming more so by formal definition.

Euclid's definition is EuOela ypaiifxi] iaTiv, tjtis i!£ taov tch's £<p' iavTtj*

crt]}xtioi<i KtlTaL, wherein he states it to lie evenly, or equally, or upon an
equality (?'£ taov) between its extremities, and which Proclus explains as

being stretched between its extremities, v i*r' aKpwv TETa^ivt].

If the line be conceived to be drawn on a plane surface, the words
t£ Icrov may mean, that no part of the line which is called a straight line

deviates either from one side or the other of the direction which is fixed

by the extremities of the line ; and thus it may be distinguished from a

curved line, which does not lie, in this sense, evenly between its extreme
points. If the line be conceived to be drawn in space, the words «'£ ta-ov,

must be understood to apply to every direction on every side of the line

between its extremities.

Every straight line situated in a plane, is considered to have two sides
;

and when the direction of a line is known, the line is said to be given in

position ; also, when the length is known or can be found, it is said to be
given in magnitude.

From the definition of a straight line, it follows, that two points fix a

straight line in position, which is the foundation of the first and second
postulates. Hence straight lines which are proved to coincide intwo ormore
points, are called, " one and the same straight line," Prop. 14, Book i,

or, which is the same thing, that "two straight lines cannot have a

common segment," as Simson shews in his Corollary to Prop. 11, Booki.
The following definition of straight lines has also been proposed.

" Straight lines are those which, if they coincide in any two points, coin-

cide as far as they are produced." But this is rather a criterion of straight

lines, and analogous to the eleventh axiom, which states that, " all right

angles are equal to one another," and suggests that all straight lines may
be made to coincide wholly, if the lines be equal ; or partially, if the lines

be of unequal lengths. A definition should properly be restricted to the

description of the thing defined, as it exists, independently of any com-
parison of its properties or of tacitly assuming the existence of axioms.

Def. vn. Euclid's definition of a plane surface is 'Ettitteoos jVi^a-
vtid ia-riv rjVts t'£ taov Tats i<p' iavTrj<s tvdtiai^ KtiTou, " A plane surface is

that which lies evenly or equally with the straight lines in it ;" instead

of which Simson has given the definition which was originally proposed
by Hero the Elder. A plane superficies may be supposed to be situated
in any position, and to be continued in every direction to any extent.

Def. viii. Simson remarks that this definition seems to include the
angles formed by two curved lines, or a curve and a straight line, as well
as that formed by two straight lines.

Angles made by straight lines only, are treated of in Elementary
Geometry.
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Def. rx. It is of the highest importance to attain a clear conception
of an angle, and of the sum and difference of two angles. The literal

meaning of the term angulus suggests the Geometrical conception of an
angle, which may be regarded as formed by the divergence oftwo straight
lines from a point. In the definition of an angle, the magnitude of the
angle is independent of the lengths of the two lines by which it is

included ; their mutual divergence from the point at which they meet, is

the criterion of the magnitude of an angle, as it is pointed out in the
succeeding definitions. The point at which the two lines meet is called
the angular point or the vertex of the angle, and must not be confounded
with the magnitude of the angle itself. The right angle is fixed in mag-
nitude, and, on this account, it is made the standard with which all

other angles are compared.
Two straight lines which actually intersect one another, or which

when produced would intersect, are said to be inclined to one another,
and the inclination of the two lines is determined by the angle which
they make with one another.

Def. x. It may be here observed that in the Elements, Euclid always
assumes that when one line is perpendicular to another line, the latter is

also perpendicular to the former ; and always calls a right angle, 6pdi]

ywvla ; but a straight line, evdsla ypa/1/xrj.

Def. xix. This has been restored from Proclus, as it seems to have a
meaning in the construction of Prop. 14, Book n ; the first case of Prop.
33, Book in, and Prop. 13, Book vi. The definition of the segment of a

circle is not once alluded to in Book I, and is not required before the dis-

cussion of the properties of the circle in Book in. Proclus remarks on
this definition :

" Hence you may collect that the center has three places

:

for it is either within the figure, as in the circle ; or in its perimeter, as

in the semicircle ; or without the figure, as in certain conic lines."

Def. xxiv-xxix. Triangles are divided into three classes, by reference

to the relations of their sides ; and into three other classes, by reference

to their angles. A further classification may be made by considering

both the relation of the sides and angles in each triangle.

In Simson's definition of the isosceles triangle, the word only must be
omitted, as in the Cor. Prop. 5, Book I, an isosceles triangle may be
equilateral, and an equilateral triangle is considered isosceles in Prop. 15,

Book iv. Objection has been made to the definition of an acute-angled

triangle. It is said that it cannot be admitted as a definition, that all the

three angles of a triangle are acute, which is supposed in Def. 29. It

may be replied, that the definitions of the three kinds of angles point out

and seem to supply a foundation for a similar distinction of triangles. .

Def. xxx-xxxiv. The definitions of quadrilateral figures are liable to

objection. All of them, except the trapezium, fall under the general

idea of a parallelogram ; but as Euclid defined parallel straight lines

after he had defined four-sided figures, no other arrangement could be

adopted than the one he has followed ; and for which there appeared to

him, without doubt, some probable reasons. Sir Henry Savile, in his

Seventh Lecture, remarks on some of the definitions of Euclid, "Nee
dissimulandum aliquot harum in manibus exiguum esse usum in Geo-
metria." A few verbal emendations have been made in some of them.

A square is a four-sided plane figure having all its sides equal, and

one angle a right angle : because it is proved in Prop. 46, Book i, that if a

parallelogram have one angle a right angle, all its angles are right

angles.
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An oblong, in the same manner, may be denned as a plane figure of

four sides, having only its opposite sides equal, and one of its angles a

right angle.

A rhomboid is a four-sided plane figure having only its opposite sides

equal to one another and its angles not right angles.

Sometimes an irregular four-sided figure which has two sides parallel,

is called a trapezoid.

Def. xxxv. It is possible for two right lines never to meet when pro-
duced, and not be parallel.

Def. A. The term parallelogram literally implies a figure formed by
parallel straight lines, and may consist of four, six, eight, or any even
number of sides, where every two of the opposite sides are parallel to one
another. In the Elements, however, the term is restricted to four-sided

figures, and includes the four species of figures named in the Definitions

xxx—XXXIII.

The synthetic method is followed by Euclid not only in the demon-
strations of the propositions, but also in laying down the definitions ., He
commences with the simplest abstractions, defining a point, a line, an
angle, a superficies, and their different varieties. This mode of proceed-
ing involves the difficulty, almost insurmountable, of defining satisfac-

torily the elementary abstractions of Geometry. It has been observed,

that it is necessary to consider a solid, that is, a magnitude which has
length, breadth, and thickness, in order to understand aright the defini-

tions of a point, a line, and a superficies. A solid or volume considered
apart from its physical properties, suggests the idea of the surfaces by
which it is bounded : a surface, the idea of the line or lines which form
its boundaries : and a finite line, the points which form its extremities.

A solid is therefore bounded by surfaces ; a surface is bounded by lines
;

and a line is terminated by two points. A point marks position only : a

line has one dimension, length only, and defines distance : a superficies

has two dimensions, length and breadth, and defines extension : and a

solid has three dimensions, length, breadth, and thickness, and defines

some portion of space.

It may also be remarked that two points are sufficient to determine
the position of a straight line, and three points not in the same straight

line, are necessary to fix the position of a plane.

ON THE POSTULATES.

The definitions assume the possible existence of straight lines and
circles, and the postulates predicate the possibility of drawing and of

producing straight lines, and of describing circles. The postulates form
the principles of construction assumed in the Elements ; and are, in fact,

problems, the possibility of which is admitted to be self-evident, and to

require no proof.

It must, however, be carefully remarked, that the third postulate only
admits that when any line is given in position and magnitude, a circle

may be described from either extremity of the line as a center, and with
a radius equal to the length of the line, as in Euc. i, 1. It does not
admit the description of a circle with any other point as a center than
one of the extremities of the given line.

Euc. i. 2, shews how, from any given point, to draw a straight line

equal to another straight line which is given in magnitude and position.
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ON THE AXIOMS.
Axioks are usually defined to be self-evident truths, which, cannot he

rendered more evident by demonstration ; in other words, the axioms of

Geometry are theorems, the truth of which is admitted without proof.

It is by experience we first become acquainted with the different forms
of geometrical magnitudes, and the axioms, or the fundamental ideas of

their equality or inequality appear to rest on the same basis. The con-
ception of the truth of the axioms does not appear to be more removed
from experience than the conception of the definitions.

These axioms, or first principles of demonstration, are such theorems
as cannot be resolved into simpler theorems, and no theoiv m ought to be
admitted as a first principle of reasoning which is capable of being de-
monstrated. An axiom, and (when it is convertible) its converse, should
both be of such a nature as that neither of them should require a formal
demonstration.

The first and most simple idea, derived from experience is, that every
magnitude fills a certain space, and that several magnitudes may succes-

sively fill the same space.
All the knowledge we have of magnitude is purely relative, and the

most simple relations are those of equality and inequality. In the com-
parison of magnitudes, some are considered as given or known, and the
unknown are compared with the known, and conclusions are syntheti-
cally deduced with respect to the equality or inequality of the magnitudes
under consideration. In this manner we form our idea of equality,

which is thus formally stated in the eighth axiom :
" Magnitudes which

coincide with one another, that is, which exactly fill the same space, are

equal to one another."
Every specific definition is referred to this universal principle. With

regard to a few more general definitions which do not furnish an equality,

it will be found that some hypothesis is always made reducing them to

that principle, before any theory is built upon them. As for example,
the definition of a straight line is to be referred to the tenth axiom ; the
definition of a right angle to the eleventh axiom ; and the definition of

parallel straight lines to the twelfth axiom.
The eighth axiom is called the principle of superposition, or, the

mental process by which one Geometrical magnitude may be conceived
to be placed on another, so as exactly to coincide with it, in the parts

which are made the subject of comparison. Thus, if one straight line be
conceived to be placed upon another, so that their extremities are coin-

cident, the two straight lines are equal. If the directions of two lines

which include one angle, coincide with the directions of the two lines

which contain another angle, where the points, from which the angles

diverge, coincide, then the two angles are equal : the lengths of the lines

not affecting in any way the magnitudes of the angles. When one plane
figure is conceived to be placed upon another, so that the boundaries of

one exactly coincide with the boundaries of the other, then the two
plane figures are equal. It may also be remarked, that the converse of

this proposition is not universally true, namely, that when two magni-
tudes are equal, they coincide with one another : since two magnitudes
may be equal in area, as two parallelograms or two triangles, Euc. i. 35,

37 ; but their boundaries may not be equal : and, consequently, by
superposition, the figures could not exactly coincide : all such figures,

however, having equal areas, by a different arrangement of their parts,

may be made to coincide exactly.
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This axiom is the criterion of Geometrical equality, and is essentially

different from the criterion of Arithmetical equality. Two geometrical
magnitudes are equal, when they coincide or may be made to coincide :

two abstract numbers are equal, when they contain the same aggregate
of units ; and two concrete numbers are equal, when they contain the

same number of units of the same kind of magnitude. It is at once ob-

vious, that Arithmetical representations of Geometrical magnitudes are

not admissible in Euclid's criterion of Geometrical Equality, as he has not
fixed the unit of magnitude of either the straight bine, the angle, or the
superficies. Perhaps Euclid intended that the first seven axioms should
be applicable to numbers as well as to Geometrical magnitudes, and this

is in accordance with the words of Proclus, who calls the axioms, common
notions, not peculiar to the subject of Geometry.

Several of the axioms maybe generally exemplified thus :

Axiom i. If the straight line AB be equal A _B

to the straight line CD ; and if the straight

line EF be also equal to the straight line CD
;

then the straight line AB is equal to the

straight line EF.
Axiom ii. Ifthe line AB be equal to the line

CD ; and if the line EF be also equal to the
line GH: then the sum of the lines AB and EF
is equal to the sum of the lines CD and GH.

Axiom in. If the line AB be equal to the
line CD ; and ifthe line EFbe also equal to the
line GH; then the difference of AB and EF,
is equal to the difference of CD and GH.
Axiom iv. admits of being exemplified under the two following forms :

1. If the line AB be equal to the line CD

;

and if the line EF be greater than the line GH;
then the sum of the lines AB and EFis greater

than the sum of the lines CD and GH.
2. If the line AB be equal to the line CD

;

and if the line EF be less than the line GH ;

then the sum of the lines AB and EF is less

titan the sum of the lines CD and GH.
Axiom v. also admits of two forms of exemplification.

1. If the line AB be equal to the line CD ; a I

and if the line EF be greater than the line GH
;

then the difference of the lines AB and EF is E
greatex than the difference of CD and GH.

2. If the line AB be equal to the line CD ; A I

and if the line EF be less than the line GH

;

then the difference of the lines AB and EF is ?
less thanthe difference of the liifes CD and GH.

The axiom, "Ifunequals be taken from equals, the remainders ate
unequal," may be exemplified in the same manner.

Axiom vi. If the line AB be double of the A B

line CD ; and if the line EF be also double of " p
the line CD; E F
then the line AB is equal to the line EF.
Axiom vii. If the line AB be the half of A B

the line CD ; and if the line EF be also the C D
half of the line CD; E P

then the line AB is equal to the line EF.
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It may be observed that when equal magnitudes are taken from un-
equal magnitudes, the greater remainder exceeds the less remainder by
as much as the greater of the unequal magnitudes exceeds the less.

If unequals be taken from unequals, the remainders are not always
unequal ; they may be equal : also if unequals be added to unequals the
wholes are not always unequal, they may also be equal.

Axiom ix. The whole is greater than its part, and conversely, the

part is less than the whole. This axiom appears to assert the contrary
of the eighth axiom, namely, that two magnitudes, of which one is

greater than the other, cannot be made to coincide with one another.
Axiom x. The property of straight lines expressed by the tenth

axiom, namely, " that two straight lines cannot enclose a space," is ob-
viously implied in the definition of straight lines ; for if they enclosed a

space, they could not coincide between their extreme points, when the
two lines are equal.

Axiom xi. This axiom has been asserted to be a demonstrable theo-

rem. As an angle is a species of magnitude, this axiom is only a parti-

cular application of the eighth axiom to right angles.

Axiom xii, See the notes on Prop. xxix. Book i.

ON THE PROPOSITIONS.
Whenever a judgment is formally expressed, there must be some-

thing respecting which the judgment is expressed, and something else

which,constitutes the judgment. The former is called the subject of the
proposition, and the latter, the predicate, which may be anything which
can be affirmed or denied respecting the subject.

The propositions in Euclid's Elements of Geometry may be divided
into two classes, problems and theorems. A proposition, as the term
imports, is something proposed ; it is a problem, when some Geometrical
construction is required to be effected : and it is a theorem when some Geo-
metrical property is to be demonstrated. Every proposition is natu-
rally divided into two parts ; a problem consists of the data, or things

given; and the qucesita, or things required: a theorem, consists of the
subject or hypothesis, and the conclusion, oxpredicate. Hence the distinction

between a problem and a theorem is this, that a problem consists of the
data and the qusesita, and requires solution : and a theorem consists of

the hypothesis and the predicate, and requires demonstration.
All propositions are affirmative or negative ; that is, they either assert

some property, as Euc. i. 4, or deny the existence of some property, as

Euc. i. 7 ; and every proposition which is affirmatively stated has a con-
tradictory corresponding proposition. If the affirmative be proved to be
true, the contradictory is false.

All propositions may be viewed as (1) universally affirmative, or uni-

versally negative
; (2) as particularly affirmative, or particularly negative.

The connected course of reasoning by which any Geometrical truth is

established is called a demonstration It is called a direct demonstration
when the predicate of the proposition is inferred directly from the pre-
misses, as the conclusion of a series of successive deductions. The de-
monstration is called indirect, when the conclusion shows that the intro-

duction of any other supposition contrary to the hypothesis stated in the
proposition, necessarily leads to an absurdity.

It has been remarked by Pascal, that " Geometry is almost the only
subject as to which we find truths wherein all men agree ; and one cause
of this is, that Geometers alone regard the true laws of demonstration."
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These are enumerated by hirn as eight in number. " l e To define nothing
which cannot be expressed in clearer terms than those in which it is

already expressed. 2. To leave no obscure or equivocal terms undefined.
3. To employ in the definition no terms not already known. 4. To
omit nothing in the principles from which we argue, unless we are sure-

it is granted. 5. To lay down no axiom which is not perfectly evident.

6. To demonstrate nothing which is as clear already as we can make it.

7. To prove every thing in the least doubtful by means of self-evident

axioms, or of propositions already demonstrated. 8. To substitute

mentally the definition instead of the thing defined." Of these rules, ho
says, " the first, fourth and sixth are not absolutely necessary to avoid
error, but the other five are indispensable ; and though they may be found
in books of logic, none but the Geometers have paid any regard to them."

The course pursued in the demonstrations of the propositions in

Euclid's Elements of Geometry, is always to refer directly to some ex-

pressed principle, to leave nothing to be inferred from vague expressions,

and to make every step of the demonstrations the object of the under-
standing.

It has been maintained by some philosophers, that a genuine defini-

tion contains some property or properties which can form a basis for

demonstration, and that the science of Geometry is deduced from the
definitions, and that on them alone the demonstrations depend. Others
have maintained that a definition explains only the meaning of a term,
and does not embrace the nature and properties of the thing defined.

If the propositions usually called postulates and axioms are either

tacitly assumed or expressly stated in the definitions ; in this view, de-

monstrations may be said to be legitimately founded on definitions. If,

on the other hand, a definition is simply an explanation of the meaning
of a term, whether abstract or concrete, by such marks as may prevent a

misconception of the thing defined ; it will be at once obvious that some
constructive and theoretic principles must be assumed, besides the defini-

tions to form the ground of legitimate demonstration. These principles

we conceive to be the postulates and axioms. The postulates describe

constructions which may be admitted as possible by direct appeal to our
experience; and the axioms assert general theoretic truths so simple
and self-evident as to require no proof, but to be admitted as the assumed
first principles of demonstration. Under this view all Geometrical
reasonings proceed upon the admission of the hypotheses assumed in

the definitions, and the unquestioned possibility of the postulates, and
the truth of the axioms.
Deductive reasoning is generally delivered in the form of an enthymeme,

or an argument wherein one enunciation is not expressed, but is readily

supplied by the reader : and it may be observed, that although this is the
ordinary mode of speaking and writing, it is not in the strictly syllogistic

form ; as either the major or the minor premiss only is formally stated
before the conclusion : Thus in Euc. i. 1.

Because the point A is the center of the circle BCD
;

therefore the straight line AB is equal to the straight line AC.
The premiss here omitted, is : all straight lines drawn from the center

of a circle to the circumference are equal.
In a similar way may be supplied the reserved premiss in every enthy-

meme. The conclusion of two enthymemes may form the major and minor
premiss of a third syllogism, and so on, and thus any process of reasoning
is reduced to the strictly syllogistic form. And in this way it is shewn
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that the general theorems of Geometry are demonstrated by means o.

syllogisms founded on the axioms and definitions.

Every syllogism consists of three propositions, of which, two are called

the premisses, and the third, the conclusion. These propositions contain

three terms, the subject and predicate of the conclusion, and the middle
term which connects the predicate and the conclusion together. The
subject of the conclusion is called the minor, and the predicate of the con-

clusion is called the major term, of the syllogism. The major term appears
in one premiss, and the minor term in the other, with the middle term,

which is in both premisses. That premiss which contains the middle
term and the major term, is called the major premiss ; and that which
contains the middle term and the minor term, is called the minorpremiss
ofthe syllogism. As an example, we may take the syllogism in the demon-
stration of Prop. 1, Book 1, wherein it will be seen that the middle term is

the subject of the major premiss and the predicate of the minor.
Major premiss; because the straight lineAB is equal to the straight line AC;
Minor premiss: and, because the straight line BC is equal to the straight

line AB
;

Conclusion : therefore the straight line BC is equal to the straight line A C.

Here, BC is the subject, and AC the predicate of the conclusion.

BC is the subject, and AB the predicate of the minor premiss.

AB is the subject, and AC the predicate of the major premiss.

Also, AC is the major term, BC the minor term, and AB the middle term
of the syllogism.

In this syllogism, it may be remarked that the definition of a straight

line is assumed, and the definition of the Geometrical equality of two
straight lines ; also that a general theoretic truth, or axiom, forms the

ground of the conclusion. And further, though it be impossible to make
any point, mark or sign (ctv/ieIov) which has not both length and breadth,

and any line which has not both length and breadth ; the demonstrations
in Geometry do not on this account become invalid. For they are pursued
on the hypothesis that the point has no parts, but position only : and the

line has length only, but no breadth or thickness : also that the surface

has length and breadth only, but no thickness : and all the conclusions
at which we arrive are independent of every other consideration.

The truth of the conclusion in the syllogism depends upon the truth

of the premisses. If the premisses, or only one of them be not true, the
conclusion is false. The conclusion is said to follow from the premisses;
whereas, in truth, it is contained in the premisses. The expression must
be understood of the mind apprehending in succession, the truth oi

the premisses, and subsequent to that, the truth of the conclusion

;

so that the conclusion follows from the premisses in order of time
as far as reference is made to the mind's apprehension of the whole
argument.

Every proposition, when complete, may be divided into six parts, as

Proclus has pointed out in his commentary.
1 . The proposition, or general emmciation, which states in general terms

the conditions of the problem or theorem.
?.. The exposition, or particular enunciation, which exhibits the subject

of the proposition in particular terms as a fact, and refers it to some
diagram described.

3. The determination contains the predicate in particular terms as it

is pointed out in the diagram, and directs attention to the demonstr vt'.oiu

by pronouncing the thing sought.

.
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4. The construction applies the postulates to prepare the diagram for

|
the demonstration.

5. The demonstration is the connexion of syllogisms, which prove the
truth or falsehood of the theorem, the possibility or impossibility of the

problem, in that particular case exhibited in the diagram.

6. The conclusion is merely the repetition of the general enunciation,

wherein the predicate is asserted as a demonstrated truth.

Prop. i. In the first two Books, the circle is employed as a me-
chanical instrument, in the same manner as the straight line, and the use
made of it rests entirely on the third postulate. No properties of the
circle are discussed in these books beyond the definition and the third

postulate. When two circles are described, one of which has its center in

the circumference of the other, the two circles being each of them partly

within and partly without the other, their circumferences must intersect

each other in two points ; and it is obvious from the two circles cutting

each other, in two points, one on each side of the given line, that two
equilateral triangles may be formed on the given line.

Prop. ii. When the given point is neither in the line, nor in the line

produced, this problem admits of eight different lines being drawn from
the given point in different directions, every one of which is a solution
of the problem. For, 1. The given line has two extremities, to each of

which a line may be drawn from the given point. 2. The equilateral

triangle may be described on either side of this line. 3. And the side

BD of the equilateral triangle ABD may be produced either way.
But when the given point lies either in the line or in the line pro-

duced, the distinction which arises from joining the two ends of the line

with the given point, no longer exists, and there are only four cases of

the problem.
The construction of this problem assumes a neater form, by first de-

scribing the circle CGH with center B and radius BC, and producing D

B

the side of the equilateral triangle DBA to meet the circumference in G :

next, with center D and radius DG, describing the circle GKL, and then
producing DA to meet the circumference in L.

By a similar construction the less of two given straight lines may be
produced, so that the less together with the part produced may be equal
to the greater.

Prop. in. This problem admits of two solutions, and it is left unde-
termined from which end of the greater line the part is to be cut off.

By means of this problem, a straight line may be found equal to the
sum or the difference of two given lines.

Prop. iv. This forms the first case of equal triangles, two other cases

are proved in Prop. viii. and Prop. xxvi.
The term base is obviously taken from the idea of a building, and the

same may be said of the term altitude. In Geometry, however, these
terms are not restricted to one particular position of a figure, as in the
case of a building, but may be in any position whatever.

Prop. v. Proclus has given, in his commentary, a proof for the
equality of the angles at the base, without producing the equal sides.

The construction follows the same order, taking in AB one side of
the isosceles triangle ABC, a point D and cutting off from AC a. part
AB equal to AD, and then joining CD and BE.
A corollary is a theorem which results from the demonstration of

a proposition.

Prop. vi. is the converse of one part of Prop, v. One proposition

d2



52 euclid's elements.

is defined to be the converse of another when the hypothesis of the
former becomes the predicate of the latter ; and vice versa.

There is besides this, another kind of conversion, when a theorem
has several hypotheses and one predicate ; by assuming the predicate
and one, or more than one of the hypotheses, some one of the hypotheses
may be inferred as the predicate of the converse. In this" manner,
Prop. viii. is the converse of Prop. iv. It may here be observed,
that converse theorems are not universally true : as for instance, the
following direct proposition is universally true ; "If two triangles have
their three sides respectively equal, the three angles of each shall be
respectively equal." But the converse is not universally true ; namely,
" If two triangles have the three angles in each respectively equal,
the three sides are respectively equal." Converse theorems require,

in some instances, the consideration of other conditions than those
which enter into the proof of the direct theorem. Converse and contrary

propositions are by no means to be confounded ; the contrary proposition
denies what is asserted, or asserts what is denied, in the direct pro-
position, but the subject and predicate in each are the same. A contrary

proposition is a completely contradictory proposition, and the distinction

consist* in this—that two contrary propositions may both be false, but I

of two contradictory propositions, one of them must be true, and the

;

other false. It may here be remarked, that one of the most common i

intellectual mistakes of learners, is to imagine that the denial of a i

proposition is a legitimate ground for affirming the contrary as true :

:

whereas the rules of sound reasoning allow that the affirmation of a
proposition as true, only affords a ground for the denial of the contrary
as false.

Prop. vi. is the first instance of indirect demonstrations, and they
are more suited for the proof of converse propositions. Ail those pro-

positions which are demonstrated ex absurdo, are properly analytical I

demonstrations, according to the Greek notion of analysis, which first I

supposed the thing required, to be done, or to be true, and then shewed
the consistency or inconsistency of this construction or hypothesis
with truths admitted or already demonstrated.

In indirect demonstrations, where hypotheses are made which are

not true and contrary to the truth stated in the proposition, it seems •

desirable that a form of expression should be employed different from
that in which the hypotheses are true. In all cases therefore, whether
noted by Euclid or not, the words if possible have been introduced,,

or some such qualifying expression, as in Euc. i. 6, so as not to leave

upon the mind of the learner, the impression that the hypothesis

which contiadicts the proposition, is really true.

Prop. viii. When the three sides of one triangle are shewn to

coincide with the three sides of any other, the equality of the triangles •

is at once obvious. This, however, is not stated at the conclusion of i

Prop. viii. or of Prop. xxvi. For the equality of the areas of two
coincident triangles, reference is always made by Euclid to Prop. iv.

A direct demonstration may be given of this proposition, and Prop.

vii. may be dispensed with altogether.

Let the triangles ABC, DEF be so placed that the base BC may
coincide with the base EF, and the vertices A, D may be on opposite

sides of EF. Join AD. Then because EAD is an isosceles triangle,

the angle EAD is equal to the angle EDA', and because CDA is an

isosceles triangle, the angle CAD is equal to the angle CDA. Hence
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the angle EAF is equal to the angle EDF, (ax. 2 or 3) : or the angle

BDC is equal to the angle EDF.
Prop. ix. If BA, AC be in the same straight line. This problem

then becomes the same as Prob. xi, which may be regarded as drawing
a line which bisects an angle equal to two right angles.

If FA be produced in the fig. Prop. 9, it bisects the angle which
is the defect of the angle BACfrom four right angles.

By means of this problem, any angle may be divided into four,

eight, sixteen, &c. equal angles.

Prop. x. A finite straight line may, by this problem, be divided

into four, eight, sixteen, &c. equal parts.

Prop. xi. When the point is at the extremity of the line ; by
the second postulate the line may be produced, and then the construction

applies. See note on Euc. in. 31.

The distance between two points is the straight line which joins

the points ; but the distance between a point and a straight line, is

the shortest line which can be drawn from the point to the line.

From this Prop, it follows that only one perpendicular can be drawn
from, a given point to a given line ; and this perpendicular may be
shewn to be less than any other line which can be drawn from the
given point to the given line : and of the rest, the line which is nearer
to the perpendicular is less than one more remote from it : also only
two equal straight lines can be drawn from the same point to the line,

one on each side of the perpendicular or the least. This property
is analogous to Euc. in. 7, 8.

The corollary to this proposition is not in the Greek text, but
was added by Simson, who states that it "is necessary to Prop. 1,

Book xi., and otherwise."
Prop. xii. The third postulate requires that the line CD should

be drawn before the circle can be described with the center C, and
radius CD.

Prop. xiv. is the converse of Prop. xni. "Upon the opposite sides

of it." If these words were omitted, it is possible for two lines to make
with a third, two angles, which together are equal to two right angles, in

such a manner that the two lines shall not be in the same straight line.

The line BE may be supposed to fall above, as in Euclid's figure,

or below the line BD, and the demonstration is the same in form.
Prop. xv. is the development of the definition of an angle. If the lines

at the angular point be produced, the produced lines have the same incli-

nation to one another as the original lines, but in a different position.

The converse of this Proposition is not proved by Euclid, namely :

—

If the vertical angles made by four straight lines at the same point
be respectively equal to each other, each pair of opposite lines shall

be in the same straight line.

Prop. xvii. appears to be only a corollary to the preceding pro-
position, and it seems to be introduced to explain Axiom xn, of which
it is the converse. The exact truth respecting the angles of a triangle

is proved in Prop. xxxn.
Prop. xvni. It may here be remarked, for the purpose of guarding

the student against a very common mistake, that in this proposition
and in the converse of it, the hypothesis is stated before the predicate.

Prop. xix. is the converse of Prop. xvni. It may be remarked,
that Prop. xix. bears the same relation to Prop, xviir,, as Prop, vi
does to Prop. v.
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Prop. xi. The following corollary arises from this proposition:—
A straight line is the shortest distance between two points. Foi

the straight line BC is always less than BA and AC, however near

the point A may be to the line BC.
It may be easily shewn from this proposition, that the difference

of any two sides of a triangle is less than the third side.

Prop. xxii. When the sum of two of the lines is equal to, and
when it is less than, the third line ; let the diagrams be described,

and they will exhibit the impossibility implied by the restriction laid

down in the Proposition.

The same remark may be made here, as was made under the first

Proposition, namely :—if one circle lies partly within and partly without
another circle, the circumferences of the circles intersect each other

in two points.

Prop, xxiii. CD might be taken equal to CE, and the construction

effected by means of an isosceles triangle. It would, however, be less

general than Euclid's, but is more convenient in practice.

Prop. xxiv. Simson makes the angle EDG at D in the line ED,
the side which is not the greater of the two ED, DF ; otherwise, three

different cases would arise, as may be seen by forming the different

figures. The point G might fall below or upon the base EF produced
as well as above it. Prop. xxiv. and Prop. xxv. bear to each other

the same relation as Prop. iv. and Prop. vin.

Prop. xxvi. This forms the third case of the equality of two tri-

angles. Every triangle has three sides and three angles, and when
any three of one triangle are given equal to any three of another, the

triangles may be proved to be equal to one another, whenever the

three magnitudes given in the hypothesis are independent of one another.

Prop. iv. contains the first case, when the hypothesis consists of two
sides and the included angle of each triangle. Prop. vin. contains

the second, when the hypothesis consists of the three sides of each
triangle. Prop. xxvi. contains the third, when the hypothesis consists

of two angles, and one side either adjacent to the equal angles, or

opposite to one of the equal angles in each triangle. There is another

case, not proved by Euclid, when the hypothesis consists of two sides

and one angle in each triangle, but these not the angles included by
the two given sides in each triangle. This case however is only true

under a certain restriction, thus :

If two triangles have two sides of one of them equal to two sides of the

other, each to each, and have also the angles opposite to one of the equal sides

in each triangle, equal to one another, and if the angles ojjposite to the other

equal sides be both acute, or both obtuse angles ; then shall the third sides

be equal in each triangle, as also the remaining angles of the one to the

remai?iing angles of the other.

Let ABC, DEF be two triangles which have the sides AB, AC equal

to the two sides DE, DF, each to each, and the angle ABC equal to the

angle DEF: then, if the angles ACB, DEF, be both acute, or both obtuse

angles, the third side BC shall be equal to the third side EF, and also

the angle BCA to the angle EFD, and the angle BAC to the angle EDF.
First. Let the angles ACB, DFE opposite to the equal sides AB,

DE, be both acute angles.

\iBC be not equal to EF, let BC be the greater, and from BC, cut off

BG equal to EF, and join AG.
Then in the triangles ABG, DEF, iiuc. I. 4. AG is equal to DF,
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and the angle AGE to DFE. But since AC is equal to DF, AG is equal

to AC: and therefore the angle ACG is equal to the angle AGC, which
is also an acute angle. But because AGC, AGB are together equal

to two right angles, and that AGC is an acute angle, AGB must be
an obtuse angle ; which is absurd. Wherefore, EC is not unequal
to EF, that is, BC is equal to EF, and also the remaining angles of

one triangle to the remaining angles of the other.

Secondly. Let the angles ACB, DFE, be both obtuse angles. By
proceeding in a similar way, it may be shewn that EC cannot be
otherwise than equal to EF.

If ACB, DFE be both right angles: the case falls under Euc. I. 26.

Prop, xxvii. Alternate angles are defined to be the two angles

which two straight lines make with another at its extremities, but upon
opposite sides of it.

When a straight line intersects two other straight lines, two pairs oi

alternate angles are formed by the lines at their intersections, as in the

figure, BEF, EEC are alternate angles as well as the angles AEF, EFD.
Prop, xxviii. One angle is called " the exterior angle," and another

"the interior and opposite angle," when they are formed on the same
side of a straight line which falls upon or intersects two other straight

lines. It is also obvious that on each side of the line, there will be two
exterior and two interior and opposite angles. The exterior angle EGB
has the angle GHD for its corresponding interior and opposite angle :

also the exterior angle FHD has the angle RGB for its interior and
opposite angle.

Prop, xxix is the converse of Prop, xxvn and Prop, xxviii.

As the definition of parallel straight lines simply describes them
by a statement of the negative property, that they never meet ; it is

necessary that some positive property of parallel lines should be assumed
as an axiom, on which reasonings on such lines may be founded.

Euclid has assumed the statement in the tw elfth axiom, which has
been objected to, as not being self-evident. A stronger objection

appears to be, that the converse of it forms Euc. i. 17 ; for both th$
assumed axiom and its converse, should be so obvious as not to require,

formal demonstration.
Simson has attempted to overcome the objection, not by any improved

definition and axiom respecting parallel lines ; but, by considering Euclid's
twelfth axiom to be a theorem, and for its proof, assuming two definitions

and one axiom, and then demonstrating five subsidiary Propositions.
Instead of Euclid's twelfth axiom, the following has been proposed

as a more simple property for the foundation of reasonings on parallel

lines ; namely, "If a straight line fall on two parallel straight lines,

the alternate angles are equal to one another." In whatever this may
exceed Euclid's definition in simplicity, it is liable to a similar objection,
being the converse of Euc. i. 27.

Professor Playfair has adopted in his Elements of Geometry, that
*' Two straight lines which intersect one another cannot be both parallel
to the same straight line." This apparently more simple axiom follows
as a direct inference from Euc. i. 30.

But one of the least objectionable of all the definitions which have
been proposed on this subject, appears to be that which simply expresses
the conception of equidistance. It may be formally stated thus :

" Parallel lines are such as lie in the same plane, and which neither
recede from, nor approach to, each other," This includes the con-
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ception stated by Euclid, that parallel lines never meet. Dr. Wallis
observes on this subject, " Parallelismus et sequidistantia vel idem sunt,

rel certe se mutuo comitantur."
As an additional reason for this definition being preferred, it may

be remarked that the meaning of the terms ypa/a/jial TrapdXX^XoL, suggests

the exact idea of such lines.

An account of thirty methods which have been proposed at different

times for avoiding the difficulty in the twelfth axiom, will be
found in the appendix to Colonel Thompson's " Geometry without
Axioms."

Prop. xxx. In the diagram, the two lines AB and CD are placed
one on each side of the line EF : the proposition may also be proved
when both AB and CD are on the same side of EF.

Prop, xxxii. Prom this proposition, it is obvious that if one angle
of a triangle be equal to the sum of the other two angles, that angle
is a right angle, as is shewn in Euc. in. 31, and that each of the angles

of an equilateral triangle, is equal to two thirds of a right angle, .as

it is shewn in Euc. iv. 15. Also, if one angle of an isosceles triangle

be a right angle, then each of the equal angles is half a right angle, as

in Euc. ii. 9.

The three angles of a triangle may be shewn to be equal to two
right angles without producing a side of the triangle, by drawing through
any angle of the triangle a line parallel to the opposite side, as Proclus
has remarked in his Commentary on this proposition. It is manifest
from this proposition, that the third angle of a triangle is not inde-

pendent of the sum of the other two ; but is known if the sum of any
two is known. Cor. 1 may be also proved by drawing lines from any
one of the angles of the figure to the other angles. If any of thg
sides of the figure bend inwards and form what are called re-entering

angles, the enunciation of these two corollaries will require some
modification. As Euclid gives no definition of re-entering angles, it

may fairly be concluded, he did not intend to enter into the proofs

of the properties of figures which contain such angles.

Prop, xxxiii. The words "towards the same parts" are a necessary
restriction : for if they were omitted, it would be doubtful whether
the extremities A, C, and B, D were to be joined by the lines AC and
BD ; or the extremities A, D, and B, C, by the lines AD and BC.

Prop, xxxiv. If the other diameter be drawn, it may be shewn
that the diameters of a parallelogram bisect each other, as well as bisect

the area of the parallelogram. If the parallelogram be right angled,

the diagonals are equal ; if the parallelogram be a square or a rhombus,
the diagonals bisect each other at right angles. The converse of this

Prop., namely, " If the opposite sides or opposite angles of a quadrilateral

figure be equal, the opposite sides shall also be parallel ; that is, the
figure shall be a parallelogram," is not proved by Euclid.

Prop. xxxv. The latter part of the demonstration is not expressed
very intelligibly. Simson, who altered the demonstration, seems in fact

to consider two trapeziums of the same form and magnitude, and from
one of them, to take the triangle ABE; and from the other, the tri-

angle DCF; and then the remainders are equal by the third axiom:
that is, the parallelogram ABCD is equal to the parallelogram EBCF.
Otherwise, the triangle, whose base is DE, (fig. 2.) is taken twice from
the trapezium, which would appear to be impossible, if the sense in

which Euclid applies the third axiom, is to be retained here.
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It may be observed, that the two parallelograms exhibited in fig. 2

partially lie on one another, and that the triangle whose base is BC is a

common part of them, but that the triangle whose base is DE is entirely

without both the parallelograms. After having proved the triangle ABE
equal to the triangle DCF, if we take from these equals (fig. 2.) the

triangle whose base is DE, and to each of the remainders add the

triangle whose base is BC, then the parallelogram ABCD is equal to

the parallelogram EBCF, In fig. 3, the equality of the parallelograms

ABCD, EBCF, is shewn by adding the figure EBCD to each of the

triangles ABE, DCF.
In this proposition, the word equal assumes a new meaning, and is no

longer restricted to mean coincidence in all the parts of two figures.

Prop, xxxviii. In this proposition, it. is to be understood that the

bases of the two triangles are in the same straight line. If in the

diagram the point E coincide with C, and D with A, then the angle

of one triangle is supplemental to the other. Hence the following

property :—If two triangles have two sides of the one respectively equal

to two sides of the other, and the contained angles supplemental, the

two triangles are equal.

A distinction ought to be made between equal triangles and equivalent

triangles, the former including those whose sides and angles mutually
coincide, the latter those whose areas only are equivalent.

Prop, xxxix. If the vertices of all the equal triangles which can be
described upon the same base, or upon the equal bases as in Prop. 40,

be joined, the line thus formed will be a straight line, and is called the
locus of the vertices of equal triangles upon the same base, or upon
equal bases.

A locus in plane Geometiy is a straight line or a plane curve, every
point of which and none else satisfies a certain condition. With the
exception of the straight line and the circle, the two most simple loci

;

all other loci, perhaps including also the Conic Sections, may be more
readily and effectually investigated algebraically by means of their

rectangular or polar equations.

Prop. xli. The converse of this proposition is not proved by Euclid

;

viz. If a parallelogram is double of a triangle, and they have the same base,

or equal bases upon the same straight line, and towards the same parts,

they shall be between the same parallels. Also, it may easily be shewn
that if two equal triangles are between the same parallels ; they are either

upon the same base, or upon equal bases.

Prop. xliv. A parallelogram described on a straight line is said to

be applied to that line.

Prop, xlv, The problem is solved only for a rectilineal figure of four
sides. If the given re -ilineal figure have more than four sides, it may
be divided into triang ,js by drawing straight lines from any angle of the
figure to the opposite angles, and then a parallelogram equal to the third
triangle can be applied to LM, and having an angle equal to E : and
so on for all the triangles of which the rectilineal figure is composed.

Prop. xlvi. The square being considered as an equilateral rectangle,
its area or surface may be expressed numerically if the number of lineal

units in a side of the square be given, as is shewn in the note on Prop, i.,

Book ii.

The student will not fail to remark the analogy which exists between
the area of a square and the product of two equal numbers ; and between
the side of a square and the square root of a number. There is, however,

D:5
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this distinction to be observed ; it is always possible to find the product
of two equal numbers, (or tofind the square of a number, as it is usually
called,) and to describe a square on a given line ; but conversely, though
the side of a given square is known from the figure itself, the exact
number of units in the side of a square of gi"ren area, can only be found
exactly, in such cases where the given number is a square number. For
example, if the area of a square contain 9 square units, then the spuare
root of 9 or 3, indicates the number of lineal units in the side of that
square. Again, if the area of a square contain 12 square units, the side
of the square is greater than 3, but less than 4 lineal units, and there is

no number which will exactly express the side of that square : an approxi-
mation to the true length, however, may be obtained to any assigned
degree of accuracy.

Prop, xlvii. In a right-angled triangle, the side opposite to the right
angle is called the hypotenuse, and the other two sides, the base and
perpendicular, according to their position.

In the diagram the three squares are described on the outer sides of
the triangle ABC. The Proposition may also be demonstrated (1) when
the three squares are described upon the inner sides of the triangle : (2)
when one square is described on the outer side and the other two squares
on the irmer sides of the triangle : (3) when one square is described on the
inner side and the other two squares on the outer sides of the triangle.

As one instance of the third case. If the square BE on the hypote-
nuse be described on the inner side of BC and the squares BG, HC on
the outer sides of AB, AC; the point D falls on the side FG (Euclid's

fig.) of the square BG, and KH produced meets CE in E. Let LA meet
BC in M. Join DA; then the square GB and the oblong LB are each
double of the triangle DAB, (Euc. i. 41.); and similarly by joining EA

1

the square HC and oblong LC are each double of the triangle EAC.
Whence it follows that the squares on the sides AB, AC are together
equal to the square on the hypotenuse BC.

By this proposition may be found a square equal to the sum of any given
squares, or equal to any multiple of a given square : or equal to the
difference of two given squares.

The truth of this proposition may be exhibited to the eye in some
particular instances. As in the case of that right-angled triangle whose
three sides are 3, 4, and 5 units respectively. If through the points of

division of two contiguous sides of each of the squares upon the sides, lines

be drawn parallel to the sides (see the notes on Book n.), it will be ob-

vious, that the squares will be divided into 9, 16 and 25 small squares,

each of the same magnitude ; and that the number of the small squares
into which the squares on the perpendicular and base are divided is equal
to the number into which the square on the hypo: muse is divided.

Prop, xlviii is the converse of Prop, xlvii. P. this Prop, is assumed
the Corollary that " the squares described upon two equal lines are

equal," and the converse, which properly ought to have been appended
to Prop. xlvi.

The First Book of Euclid's Elements, it has been seen, is conversant
with the construction and properties of rectilineal figures. It first lays

down the definitions which limit the subjects of discussion in the First

Book, next the three postulates, which restrict the instruments by which
the constructions in Plane Geometry are effected ; and thirdly, the twelve

axioms, which express the principles by which a comparison is made
between the ideas of the things defined.
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This Book may be divided into three parts. The first part treats of

the origin and properties of triangles, both with respect to their sides and
angles ; and the comparison of these mutually, both with regard to equality

and inequality. The second part treats of the properties of parallel lines

and of parallelograms. The third part exhibits the connection of the

properties of triangles and parallelograms, and the equality ofthe squares

on the base and perpendicular of a right-angled triangle to the square
on the hypotenuse.
When the propositions of the First Book have been read with the

notes, the student is recommended to use different letters in the diagrams,

and where it is possible, diagrams of a form somewhat different from those

exhibited in the text, for the purpose of testing the accuracy of his know-
ledge of the demonstrations. And further, when he has become suffici-

ently familiar with the method of geometrical reasoning, he may dis-

pense with the aid of letters altogether, and acquire the power of express-

ing in general terms the process of reasoning in the demonstration of any
proposition. Also, he is advised to answer the following questions

before he attempts to apply the principles of the First Book to the so*

lution of Problems and the demonstration of Theorems.

QUESTIONS ON BOOK I.

1. What is the name of the Science of which Euclid gives the Ele-
ments ? What is meant by Solid Geometry 1 Is there any distinction

between Plane Geometry, and the Geometry of Planes f

2. Define the term magnitude, and specify the different kinds of

magnitude considered in Geometry. What dimensions of space belong
to figures treated of in the first six Books of Euclid ?

3. Give Euclid's definition of a " straight line." What does he
really use as his test of rectilinearity, and where does he first employ it ?

What objections have been made to it, and what substitute has been
proposed as an available definition ? How many points are necessary to

fix the position of a straight line in a plane? When is one straight
line said to cut, and when to meet another ?

4. What positive property has a Geometrical point? From tho
definition of a straight line, shew that the intersection of two lines is a
point.

5. Give Euclid's definition of a plane rectilineal angle. What are
the limits of the angles considered in Geometry ? Does Euclid consider
angles greater than two right angles ?

6. When is a straight line said to be drawn at right angles, and when
perpendicular, to a given straight line ?

7. Define a triangle ; shew how many kinds of triangles there are ac-

cording to the variation both of the angles, and of the sides.

8. What is Euclid's definition of a circle ? Point out the assumption
involved in your definition. Is any axiom implied in it? Shew that
in this as in all other definitions, some geometrical fact is assumed as
somehow previously known.

9. Define the quadrilateral figures mentioned by Euclid.
10. Describe briefly the use and foundation of definitions, axioms}

and postulates : give illustrations by an instance of each.
11. What objection may be made to the method and order in which

Euclid has laid down the elementary abstractions of the Science of Geo-
metry ? What other method has been suggested ?
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12. V/hat distinctions may be made between definitions in the

Science of Geometry and in the Physical Sciences ?

13. What is necessary to constitute an exact definition ? Are defini-

tions propositions ? Are they arbitrary ? Are they convertible ? Does
a Mathematical definition admit of proof on the principles of the Science

to which it relates ?

14. Enumerate the principles of construction assumed by Euclid.

15. Of what instruments may the use be considered to meet approxi-

mately the demands of Euclid's postulates ? Why only approximately ?

16. "A circle may be described from any center, with any straight

line as radius." How does this postulate differ from Euclid's, and
which of his problems is assumed in it ?

17. What principles in the Physical Sciences correspond to axioms
in Geometry ?

18. Enumerate Euclid's twelve axioms and point out those which
have special reference to Geometry. State the converse of those which
admit of being so expressed.

19. What two tests of equality are assumed by Euclid? Is the

assumption of the principle of superposition (ax. 8.), essential to all

Geometrical reasoning? Is it correct to say, that it is "an appeal,

though of the most familiar sort, to external observation" ?

20. Could any, and if any, which of the axioms of Euclid be turned
into definitions ; and with what advantages or disadvantages ?

21. Define the terms, Problem, Postulate, Axiom and Theorem.
Are any of Euclid's axioms improperly so called ?

22. Of what two parts does the enunciation of a Problem, and of a

Theorem consist? Distinguish them in Euc. i. 4, 5, 18, 19.

23. When is a problem said to be indeterminate ? Give an example.
24. When is one proposition said to be the converse or reciprocal of

another ? Give examples. Are converse propositions universally true ?

If not, under what circumstances are they necessarily true ? Why is it

necessary to demonstrate converse propositions ? How are they proved?
25. Explain the meaning of the yvordproposition. Distinguish between

converse and contrary propositions, and give examples.
26. State the grounds as to whether Geometrical reasonings depend

for their conclusiveness upon axioms or definitions.

27. Explain the meaning of enthymeme and syllogism. How is the
enthymeme made to assume the form of the syllogism ? Give examples.

28. What constitutes a demonstration ? State the laws of demonstration.
29. What are the principal parts, in the entire process of establishing

a proposition ?

30. Distinguish between a direct and indirect demonstration.
31. What is meant by the term synthesis, and what, by the term,

analysis! Which of these modes of reasoning does Euclid adopt in his

Elements of Geometry ?

32. In what sense is it true that the conclusions of Geometry are

necessary truths ?

33. Enunciate those Geometrical definitions which are used in the
proof of the propositions of the First Book.

34. If in Euclid i. 1, an equal triangle be described on the other side

of the given line, what figure will the two triangles form ?

35. In the diagram, Euclid i. 2, if DB a side of the equilateral tri-

angle DAB be produced both ways and cut the circle whose center is 3
and radius BC in two points G and II \ shew that either of the dis-
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cances DG, DH may be taken as the radius of the second circle ; and
give the proof in each case.

36. Explain how the propositions Euc. I. 2, 3, are rendered necessary

by the restriction imposed by the third postulate. Is it necessary for

the proof, that the triangle described in Euc. i. 2, should be equilateral?

Could we, at this stage of the subject, describe an isosceles triangle on a

given oase ?

37. State how Euc. i. 2, may be extended to the following problem

:

I From a given point to draw a straight line in a given direction equal to

a given straight line."

38. How would 3'ou cut off from a straight line unlimited in both
directions, a length equal to a given straight line ?

39. In the proof of Euclid i. 4, how much depends upon Definition,

how much upon Axiom ?

40. Draw the figure for the third case of Euc. i. 7, and state why it

needs no demonstration.

41. In the construction Euclid I. 9, is it indifferent in all cases on
which side of the joining line the equilateral triangle is described?

42. Shew how a given straight line may be bisected by Euc. i. 1.

43. In what cases do the lines which bisect the interior angles of

plane triangles, also bisect one, ©r more than one of the corresponding
opposite sides of the triangles ?

44. " Two straight lines cannot have a common segment." Has this

corollary been tacitly assumed in any preceding proposition ?

45. In Euc. i. 12, must the given line necessarily be "of unlimited
length" ?

4fi. Shew that (fig. Euc. i. 11) every point without the perpendi-

cular drawn from the middle point of every straight line D E, is at unequal
distances from the extremities D, E of that line.

47. From what proposition may it be inferred that a straight line is

the shortest distance between two points ?

48. Enunciate the propositions you employ in the proof of Euc. I. 1G.

49. Is it essential to the truth of Euc. i. 21, that the two straight

lines be drawn from the extremities of the base ?

50. In the diagram, Euc. I. 21, by how much does the greater angle

BDO exceed the less BAC1
51. To form a triangle with three straight lines, any two of them

must be greater than the third : is a similar limitation necessary with
respect to the three angles ?

52. Is it possible to form a triangle with three lines whose lengths are

1, 2, 3 units : or one with three lines whose lengths are 1, V2, v^3 ?

53. Is it possible to construct a triangle whose angles shall be as the
numbers 1, 2, 3 ? Prove or disprove your answer.

54. What is the reason of the limitation in the construction of Euc.
i. 24. viz. " that BE is that side which is not greater than the other ?"

55. Quote the first proposition in which the equality of two areas
which cannot be superposed on each other is considered.

^
56. Is the following proposition universally true ? " If two plane

triangles have three elements of the one respectively equal to three
elements of the other, the triangles are equal in every respect." Enu-
merate all the cases in which this equality is proved in the First Book.
What case is omitted ?

57. What parts of a triangle must be given in order that the triangle
may be described ?
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58. State the converse of the second case of Euc. i. 26? Under
what limitations is it true ? Prove the proposition so limited ?

59. Shew that the angle contained between the perpendiculars drawn
to two given straight lines which meet each other, is equal to the angle
contained by the lines themselves.

60. Are two triangles necessarily equal in all respects, where a side and
two angles of the one are equal to a side and two angles of the other,
each to each ?

61. Illustrate fully the difference between analytical and synthetical

proofs. What propositions in Euclid are demonstrated analytically ?

62. Can it be properly predicated of any two straight lines that they
never meet if indefinitely produced either way, antecedently to our know-
ledge of some other property of such lines, which makes the property
first predicated of them a necessary conclusion from it ?

63. Enunciate Euclid's definition and axiom relating to parallel

straight lines ; and state in what Props, of Book i. they are used.
64. What proposition is the converse to the twelfth axiom of the

First Book ? What other two propositions are complementary to these ?

65. If lines being produced ever so far do not meet ; can they be
otherwise than parallel ? If so, under what circumstances ?

66. Define adjacent angles, opposite angles, vertical angles, and alternate

angles ; and give examples from the First Book of Euclid.

67. Can you suggest anything to justify the assumption in the
twelfth axiom upon which the proof of Euc. i. 29, depends ?

68. What objections have been urged against the definition and the

doctrine of parallel straight lines as laid down by Euclid ? Where doe?
the difficulty originate ? What other assumptions have been suggested
and for what reasons ?

69. Assuming as an axiom that two straight lines which cut one
another cannot both be parallel to the same straight line ; deduce Euclid's
twelfth axiom as a corollary of Euc. i. 29.

70. From Euc. i. 27, shew that the distance between two parallel

straight lines is constant ?

71. If two straight lines be not parallel, shew that all straight lines

falling on them, make alternate angles, which differ by the same angle.

72. Taking as the definition of parallel straight lines that they are

equally inclined to the same straight line towards the same parts
;
prove

that "being produced ever so far both ways they do not meet?" Prove
also Euclid's axiom 12, by means of the same definition.

73. What is meant by exterior and interior angles ? Point out examples.
74. Can the three angles of a triangle be proved equal to two right

angles without producing a side of the triangle ?

75. Shew how the corners of a triangular piece of paper may be
turned down, so as to exhibit to the eye that the three angles of a

triangle are equal to two right angles.

76. Explain the meaning of the term corollary. Enunciate the two
corollaries appended to Euc. i. 32, and give another proof of the first.

What other corollaries may be deduced from this proposition ?

77. Shew that the two lines which bisect the exterior and interior

angles of a triangle, as well as those which bisect any two interior

angles of a parallelogram, contain a right angle.

78. The opposite sides and angles of a parallelogram are equal to

one another, and the diameters bisect it. State and prove the converse

of this proposition. Also shew that a quadrilateral figure, is a paral-
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lelogram, when its diagonals bisect each, other : and when its diagonals

divide it into four triangles, which are equal, two and two, viz. those

which have the same vertical angles.

79. If two straight lines join the extremities of two parallel straight

lines, but not towards the same parts, when are the joining lines equal,

and when are they unequal ?

80. If either diameter of a four-sided figure divide it into two equal

triangles, is the figure necessarily a parallelogram ? Prove your answer.

81. Shew how to divide one of the parallelograms in Euc. I. 35,

by straight lines so that the parts when properly arranged shall make
up the other parallelogram.

82. Distinguish between equal triangles and equivalent triangles, and
give examples from the First Book of Euclid.

83. What is meant by the locus of a point? Adduce instances of

loci from the first Book of Euclid.

84. How is it shewn that equal triangles upon the same base or

equal bases have equal altitudes, whether they are situated on the same
or opposite sides of the same straight line ?

85. In Euc. i. 37, 38, if the triangles are not towards the same parts,

shew that the straight line joining the vertices of the triangles is

bisected by the line containing the bases.

86. If the complements (fig. Euc. i. 43) be squares, determine their

relation to the whole parallelogram.

87. What is meant by a parallelogram being applied to a straight line ?

88. Is the proof of Euc. i. 45, perfectly general ?

89. Define a square without including superfluous conditions, and
explain the mode of constructing a square upon a given straight line

m conformity with such a definition.

90. The sum of the angles of a square is equal to four right angles.

Is the converse true ? If not, why ?

91. Conceiving a square to be a figure bounded by four equal straight

lines not necessarily in the same plane, what condition respecting the
angles is necessary to complete the definition ?

92. In Euclid i. 47, why is it necessary to prove that one side of

each square described upon each of the sides containing the right angle,

should be in the same straight line with the other side of the triangle ?

93. On what assumption is an analogy shewn to exist between the
product of two equal numbers and the surface of a square ?

94. Is the triangle whose sides are 3, 4, 5 right-angled, or not?
95. Can the side and diagonal of a square be represented simul-

taneously by any finite numbers ?

96. By means of Euc. i. 47, the square roots of the natural numbers,
I, 2, 3, 4, &c. may be represented by straight lines.

97. If the square on the hypotenuse in the fig. Euc. i. 47, be
described on the other side of it : shew from the diagram how the
Bquares on the two sides of the triangle may be made to cover exactly
the square on the hypotenuse.

98. If Euclid ii. 2, be assumed, enunciate the form in which Euc. I. 47
may be expressed.

99. Classify all the properties of triangles and parallelograms
,
proved

in the First Book of Euclid.
100. Mention any propositions in Book i. which, are included in mo:e

general ones which follow.
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ON THE ANCIENT GEOMETRICAL ANALYSIS.

Synthesis, or the method of composition, is a mode of reasoning which
begins with something given, and ends with something required, either

to be done or to be proved. This may be termed a direct process, as it

leads from principles to consequences.
Analysis, or the method of resolution, is the reverse of synthesis,

and thus it may be considered an indirect process, a method of reason-
ing from consequences to principles.

The synthetic method is pursued by Euclid in his Elements of

Geometry. He commences with certain assumed principles, and pro-
ceeds to the solution of problems and the demonstration of theorems
by undeniable and successive inferences from them.

The Geometrical Analysis was a process employed by the ancient

Geometers, both for the discovery of the solution of problems and for

the investigation of the truth of theorems. In the analysis of a prob-
lem, the quaesita, or what is required to be done, is supposed to have
been effected, and the consequences are traced by a series of geometri-
cal constructions and reasonings, till at length they terminate in the

data of the problem, or in some previously demonstrated or admitted
truth, whence the direct solution of the problem is deduced.

In the Synthesis of a problem, however, the last consequence of the

analysis is assumed as the first step of the process, and by proceeding
in a contrary order through the several steps of the analysis until the

process terminate in the qusesita, the solution of the problem is effected.

But if, in the analysis, we arrive at a consequence which contra-

dicts any truth demonstrated in the Elements, or which is inconsistent

with the data of the problem, the problem must be impossible : and
further, if in certain relations of the given magnitudes the construction

be possible, while in other relations it is impossible, the discovery

of these relations will become a necessary part of the solution of the

problem.
In the analysis of a theorem, the question to be determined, is,

whether by the application of the geometrical truths proved in the

Elements, the predicate is consistent with the hypothesis. This point

is ascertained by assuming the predicate to be true, and by deducing
the successive consequences of this assumption combined with proved
geometrical truths, till they terminate in the hypothesis of the theorem
or some demonstrated truth. The theorem will be proved synthetically

by retracing, in order, the steps of the investigation pursued in the

analysis, till they terminate in the predicate, which was assumed
in the analysis. This process will constitute the demonstration of the

theorem.

If the assumption of the truth of the predicate in the analysis lead

to some consequence which is inconsistent with any demonstrated

truth, the false conclusion thus arrived at, indicates the falsehood of

the predicate ; and by reversing the process of the analysis, it may
be demonstrated, that the theorem cannot be true.

It may here be remarked, that the geometrical analysis is more
extensively useful in discovering the solution of problems than for in-

vestigating the demonstration of theorems.
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From the nature of the subject, it must be at once obvious, that no
general rules can be prescribed, which will be found applicable in all

cases, and infallibly lead to the solution of every problem. The con-

ditions of problems must suggest what constructions may be possible

;

and the consequences which follow from these constructions and the

assumed solution, will shew the possibility or impossibility of arriving

at some known property consistent with the data of the problem.

Though the data of a problem may be given in magnitude and
position, certain ambiguities will arise, if they are not properly re-

stricted. Two points may be considered as situated on the same side,

or one on each side of a given line : and there may be two lines drawn
from a given point making equal angles with a line given in position;

and to avoid ambiguity, it must be stated on which side of the line

the angle is to be formed.

A problem is said to be determinate when, with the prescribed con-

ditions, it admits of one definite solution ; the same construction which
may be made on the other side of any given line, not being considered

a different solution : and a problem is said to be indeterminate when it

admits of more than one definite solution. This latter circumstance
arises from the data not absolutely fixing, but merely restricting the

quaesita, leaving certain points or lines not fixed in one position only.

The number of given conditions may be insufficient for a single deter-

minate solution ; or relations may subsist among some of the given
conditions from which one or more of the remaining given conditions

may be deduced.
If the base of a right-angled triangle be given, and also the differ-

ence of the squares on the hypotenuse and perpendicular, the triangle

is indeterminate. For though apparently here are three things given,

the right angle, the base, and the difference of the squares on the

hypotenuse and perpendicular, it is obvious that these three apparent
conditions are in fact reducible to two : for since in a right-angled tri-

angle, the sum of the squares on the base and on the perpendicular,
is equal to the square on the hypotenuse, it follows that the differ-

ence of the squares on the hypotenuse and perpendicular, is equal to

the square on the base of the triangle, and therefore the base is known
from the difference of the squares on the hypotenuse and perpendicular
being known. The conditions therefore are insufficient to determine
a right-angled triangle ; an indefinite number of triangles may be
found with the prescribed conditions, whose vertices will lie in the line

which is perpendicular to the base.

If a problem relate to the determination of a single point, and the
data be sufficient to determine the position of that point, the problem
is determinate : but if one or more of the conditions be omitted, the
data which remain may be sufficient for the determination of more
than one point, each of which satisfies the conditions of the problem

;

in that case, the problem is indeterminate : and in general, such points
are found to be situated in some line, and hence such line is called the
locus of the point which satisfies the conditions of the problem.

If any two given points A and B (fig. Euc. IV. 5.) be joined by
a straight line AB, and this line be bisected in D, then if a perpen-
dicular be drawn from the point of bisection, it is manifest that a circb
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described with any point in the perpendicular as a center, and a radius

equal to its distance from one of the given points, will pass through
the otner point, and the perpendicular will be the locus of all the

circles which can be described passing through the two given points.

Again, if a third point Cbe taken, but not in the same straight line

with the other two, and this point be joined with the first point A
;

then the perpendicular drawn from the bisection E of this line will be
the locus of che centers of all circles which pass through the first and
third points A and C. But the perpendicular at the bisection of the

first and second points A and B is the locus of the centers of circles

which pass through these two points. Hence the intersection F of

these two perpendiculars, will be the center of a circle which passes

through the three points and is called the intersection of the two loci.

Sometimes this method of solving geometrical problems may be pur-

sued with advantage, by constructing the locus of every two points

separately, which are given in the conditions of the problem. In the

Geometrical Exercises which follow, only those local problems are

given where the locus is either a straight line or a circle.

Whenever the quassitum is a point, the problem on being rendered
indeterminate, becomes a locus, whether the deficient datum be of the

essential or of the accidental kind. When the qusesitum is a straight

line or a circle, (which were the only two loci admitted into the ancient

Elementary Geometry) the problem may admit of an accidentally in-

determinate case ; but will not invariably or even very frequently do so.

This will be the case, when the line or circle shall be so far arbitrary

in its position, as depends upon the deficiency of a single condition to

fix it perfectly ;—that is, (for instance) one point in the line, or two
points in the circle, may be determined from the given conditions, but
the remaining one is indeterminate from the accidental relations among
the data of the problem.

Determinate Problems become indeterminate by the merging of

some one datum in the results of the remaining ones. This may arise

in three different ways ; first, from the coincidence of two points

;

secondly, from that of two straight lines ; and thirdly, from that

of two circles. These, further, are the only three ways in which this

accidental coincidence ol data can produce this indeterminateness ; that

is, in other words, convert the problem into a Porism.

In the original Greek of Euclid's Elements, the corollaries to the

propositions are called porisms (Tropic^a-raS • but this scarcely explains

the nature of porisnis, as it is manifest that they are different from
simple deductions from the demonstrations of propositions. Some
analogy, however, we may suppose them to have to the porisms or

corollaries in the Elements. Pappus (Coll. Math. Lib. VII. pref.) in-

forms us that Euclid wrote three books on Porisms. He defines " a

porism to be something between a problem and a theorem, or that in

which something is proposed to be investigated." Dr. Simson, to whom
is due the merit of having restored the porisms of Euclid, gives the fol-

lowing definition of that class of propositions : "Porisma est propositio

in qua proponitur demonstrare rem aliquam, vel plures datas esse, cui,

vel quibus, ut et cuilibet ex rebus innumeris, non quidem, datis, sed

qu© ad ea qua? data sunt eandem habent relationem, convemre osten-
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dendum est affectionem quandam communem in propositione descrip-

tam." That is, " A Porism is a proposition in which it is proposed to

demonstrate that some one thing, or more things than one, are given, to

which, as also to each of innumerable other things, not given indeed,

but which have the same relation to those which are given, it is to be

shewn that there belongs some common affection described in the

proposition." Professor Dugald Stewart defines a porism to be " A
proposition affirming the possibility of finding one or more of the con-

ditions of an indeterminate theorem." Professor Playfair in a paper

(from which the following account is taken) on Porisms, printed in the

Transactions of the Iloyal Society of Edinburgh, for the year 1792,

defines a porism to be " A proposition affirming the possibility of find-

ing such conditions as will render a certain problem indeterminate or

capable of innumerable solutions."

It may without much difficulty be perceived that this definition

represents a porism as almost the same as an indeterminate problem.
There is a large class of indeterminate problems which are, in general,

loci, and satisfy certain defined conditions. Every indeterminate

problem containing a locus may be made to assume the form of a

porism, but not the converse. Porisms are of a more general nature

than indeterminate problems which involve a locus.

The ancient geometers appear to have undertaken the solution of

problems with a scrupulous and minute attention, which would
scarcely allow any of the collateral truths to escape their observation.

They never considered a problem as solved till they had distinguished

all its varieties, and evolved separately every different case that could
occur, carefully distinguishing whatever change might arise in the

construction from any change that was supposed to take place among
the magnitudes which were given. This cautious method of proceed-
ing soon led them to see that there were circumstances in which the

solution of a problem would cease to be possible ; and this always
happened when one of the conditions of the data was inconsistent with
the rest. Such instances would occur in the simplest problems ; but
in the analysis of more complex problems, they must have remarked
that their constructions failed, for a reason directly contrary to that

assigned'. Instances would be found where the lines, which, by their

intersection, were to determine the thing sought, instead of intersecting

one another, as they did in general, or of not meeting at all, would
coincide with one another entirely, and consequently leave the question
unresolved. The confusion thus arising would soon be cleared up, by
observing, that a problem before determined by the intersection of two
lines, would now become capable of an indefinite number of solutions.

This was soon perceived to arise from one of the conditions of the pro-
blem involving another, or from two parts of the data becoming one,
so that there was not left a sufficient number ofindependent conditions
to confine the problem to a single solution, or any determinate number
of solutions. It was not difficult afterwards to perceive, that these
cases of problems formed very curious propositions, of an indeter-
minate nature between problems and theorems, and that they ad-
mitted of being enunciated separately. It was to such propositions
bo enunciated that the ancient geometers gave the name of Porisms.

Besides, it will be found, that some problems are possible within
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certain limits, and that certain magnitudes increase while others de-

crease within those limits ; and after having reached a certain value,

the former begin to decrease, while the latter increase. This circum-
stance gives rise to questions of maxima and minima, or the greatest

and least values which certain magnitudes may admit of in indeter-

minate problems.
In the following collection of problems and theorems, most will be

found to be of so simple a character, (being almost obvious deductions

from propositions in the Elements) as scarcely to admit of the prin-

ciple of the Geometrical Analysis being applied, in their solution.

It must however be recollected that a clear and exact knowledge
of the first principles of Geometry must necessarily precede any in-

telligent application of them. Indistinctness or defectiveness of un-
derstanding with respect to these, will be a perpetual source of error

and confusion. The learner is therefore recommended to understand
the principles of the Science, and their connexion, fully, before he
attempt any applications of them. The following directions may-

assist him in his proceedings.

ANALYSIS OF THEOREMS.
1. Assume that the Theorem is true.

2. Proceed to examine any consequences that result from this

admission, by the aid of other truths respecting the diagram, which
have been already proved.

3. Examine whether any of these consequences are already known
to be true, or to hefalse.

4. Ifany one of them be false, we have arrived at a reductio ad ab-

surdum, which proves that the theorem itself is false, as in Euc. I. 25.

5. If none of the consequences so deduced be known to be either

true or false, proceed to deduce other consequences from all or any of

these, as in (2).

6. Examine these results, and proceed as in (3) and (4) ; and if

still without any conclusive indications of the truth or falsehood of

the alleged theorem, proceed still further, until such are obtained.

ANALYSIS OF PROBLEMS.
1. In general, any given problem will be found to depend on

several problems and theorems, and these ultimately on some problem
or theorem in Euclid.

2. Describe the diagram as directed in the enunciation, and sup-

pose the solution of the problem effected.

3. Examine the relations of the lines, angles, triangles, &c. in

the diagram, and find the dependence of the assumed solution on some
theorem or problem in the Elements.

4. If such cannot be found, draw other lines parallel or perpen*

dicular as the case may require, join given points, or points assumed
in the solution, and describe circles if need be : and then proceed to

trace the dependence of the assumed solution on some theorem or

problem in Euclid.

5. Let not the first unsuccessful attempts at the solution of a

Problem be considered as of no value ; such attempts have been found

to lead to the discovery of other theorems and problems.
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PROPOSITION I. PROBLEM.
To trisect a given straight line.

Analysis. Let AB be the given straight line, and suppose it

divided into three equai parts in the points D, E.

c

On DE describe an equilateral triangle DEF,
then Di^is equal to AD, and FE to EB.

On AB describe an equilateral triangle ABC,
and join AF, FB.

Then because AD is equal to DF,
therefore the angle AFD is equal to the angle DAF,

and the two angles DAF, DFA are double of one of them DAF.
But the angle FDE is equal to the angles DAF, DFA,

and the angle FDE is equal to DA C, each being an angle of an

equilateral triangle

;

therefore the angle DAC is double the angle DAF;
-wherefore the angle DA C is bisected by AF.

Also because the angle FAC is equal to the angle FAD,
and the angle FAD to DFA

;

therefore the angle CAF is equal to the alternate angle AFD:
and consequently FD is parallel to AC.

Synthesis. Upon AB describe an equilateral triangle ABC,
bisect the angles atA andB by the straight lines AF, BF, meeting in F;

through F draw FD parallel to A C, and FE parallel to BC.
Then AB is trisected in the points D, E.

For since AC is parallel to FD and FA meets them,
therefore the alternate angles FA C, AFD are equal

;

but the angle FAD is equal to the angle FA C,

hence the angle DAF is equal to the angle AFD,
and therefore DF is equal tc DA.

But the angle FDE is equal to the angle CAB,
and FED to CBA

;
(I, 29.)

therefore the remaining angle DFE is equal to the remaining angle

ACB.
Hence the three sides of the triangle DFE are equal to one another,

and DF has, been shewn to be equal to DA,
therefore AD- DE, EB are equal to one another.

Hence the following theorem.
If the angles at the base of an equilateral triangle be bisected by

two lines which meet at a point within the triangle ; the two lines

drawn from this point parallel to the sides of the triangle, divide the
base into three equal parts.
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Note. There is another method whereby a line may be divided

into three equal parts :—by drawing from one extremity of the given

line, another making an acute angle with it, and taking three equal

distances from the extremity, then joining the extremities, and through
the other two points of division, drawing lines parallel to this line

through the other two points of division, and to the given line ; the

three triangles thus formed are equal in all respects. This may be
extended for any number of parts, and is a particular case of Euc. VI. 10.

PROPOSITION II. THEOREM.
If tioo opposite sides of a parallelogram be bisected, and two lines be drawn

from the points of bisection to the opposite angles, these two lines trisect

the diagonal.

Let ABCD be a parallelogram of which the diagonal is AC.
Let AB be bisected in E, and DC in F,

also let DE, FB be joined cutting the diagonal in G, II.

Then A C is trisected in the points G, H.

A E B

Through E draw EK parallel to AC and meeting FB in K.
Then because EB is the half of AB, and DF the half of DC;

therefore EB is equal to DF;
and these equal and parallel straight lines are joined towards the

same parts by DE and FB

;

therefore DE and FB are equal and parallel, (i. 33.)

And because AEB meets the parallels EK, A C,

therefore the exterior angle BEK is eGual to the interior angle EAG.
For a similar reason, the angle EBK is equal to the angle AEG.
Hence in the triangles AEG, EBK, there are the two angles GAE,

AEG in the one, equal to the two angles KEB, EBK in the other,

and one side adjacent to the equal angles in each triangle, namely AE
equal to EB

;

therefore AG is equal to EK, (i. 26.)

but EK is equal to Gil, (i. 34.) therefore A G is equal to GH.
By a similar process, it may be shewn that GHis equal to HC.

Hence AG, GH, JZCare equal to one another,

and therefore AC is trisected in the points G, H.
It may also be proved that BF is trisected in H and K.

PROPOSITION III. PROBLEM.
Draw through a given point, between two straight lines not parallel, a

straight line which shall be bisected in that point.

Analysis. Let BC BD be the two lines meeting in B, and let A
be the given point between them.



ON BOOK I. 71

Suppose the line EAF drawn through A, so that EA is equal to AF$
D

B H EC
through A draw AG parallel to BC, and GH parallel to EF.
Then AGHE is a parallelogram, wherefore AE is equal to GH,

but EA is equal to AFhy hypothesis ; therefore GH is equal to AF.
Hence in the triangles BHG, GAF,

the angles HBG, A GF are equal, as also BGH, GFA, (i. 29.)

also the side GH is equal to AF;
whence the other parts of the triangles are equal, (I. 26.)

therefore BG is equal to GF.
Synthesis. Through the given point A, draw AG parallel to BC

;

on GD, take GF equal to GB
;

then _F is a second point in the required line

:

join the points F, A, and produce FA to meet BC in E;
then the line FE is bisected in the point A

;

draw GH parallel to AE.
Then in the triangles BGH, GFA, the side BG is equal to GF,

and the angles GBH, BGH are respectively equal to FGA, GFA,
wherefore GH is equal to ^4JF, (i. 26.)

but GH is equal to AE, (I. 34.)

therefore .4i? is equal to AF, or -Z?_F is bisected in A.

PROPOSITION IV. PROBLEM.
From two given points on the same side of a straight line given in posi-

tion, draw two straight lines which shall meet in that line, and make equal
angles with it; also prove, that the sum of these two lines is less than the

sum of any other two lines drawn to any other point in the line.

Analysis. Let A, B be the two given points, and CD the given line.

Suppose G the required point in the line, such that AG and BG
being joined, the angle AGC is equal to the angle BGD.

B

Draw AF perpendicular to CD and meeting BG produced in 15.

Then, because the angle BGD is equal to AGF, (hyp.)

and also to the vertical angle FGE, (i. 15.)

therefore the angle AGF is equal to the angle EGF;
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also the right angle AFG is equal to the right angle EFG,
and the side FG is common to the two triangles AFG, EFG,

therefore AG is equal to EG, and ^4.Fto FE.
Hence the point E being known, the point G is determined by the

intersection of CD and BE.
Synthesis. From A draw AF perpendicular to CD, and prod ucc

it to E, making FE equal to AF, and join BE cutting CD in G.
Join also A. G.

Then AG and BG make equal angles with CD.
For since AF is equal to FE, and FG is common to the two

triangles A GF, EGF, and the included angles AFG, EFG are equal

;

therefore the base A G is equal to the base EG,
and the angle A GF to the angle EGF;

but the angle EGF is equal to the vertical angle BGD,
therefore the angle AGF is equal to the angle BGD :

that is, the straight lines AG and BG make equal angles with

the straight line CD.
Also the sum of the lines A G, GB is a minimum.

For take any other point H'm CD, and join EH, KB, AH.
Then since any two sides of a triangle are greater than the third side,

therefore EH, HB are greater than EB in the triangle EHB.
But EG is equal to AG, and EH to AH:

therefore AH, HB are greater than AG, GB.
That is, A G, GB are less than any other two lines which can be

drawn from A, B, to any other point _H"in the line CD.
By means of this Proposition may be found the shortest path from

one given point to another, subject to the condition, that it shall

meet two given lines.

PROPOSITION V. PROBLEM.
Given one angle, a side opposite to it, and the sum of the other two sides,

construct the triangle.

Analysis. Suppose BA C the triangle required, having BC equal

to the given side, BAC equal to the given angle opposite to BC, also

BD equal to the sum of the other two sides.

Join DC.
Then since the two sides BA, AC are equal to BD, by^ taking BA

from these equals, the remainder ^Cis equal to the remainder AD.
Hence the triangle A CD is isosceles, and therefore the angle ADC

is equal to the angle ACD.
But the exterior angle BA C of the triangle ADC is equal to the

two interior and opposite angles ACD and ADC:
"Wherefore the angle BACis double the angle BDC, and BDC is

the half of the angle BA C.

Hence the synthesis.
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At the point B in BB, make the angle BBO equal to half the
given angle,

and from B the other extremity of BB, draw BO equal to the
given side, and meeting BG in 0,

at G in CB make the angle BGA equal to the angle CBA, so
that GA may meet j5D in the point A.

Then the triangle ABC shall have the required conditions.

PROPOSITION VI. PROBLEM.
To bisect a triangle by a line drawn from a given point in one of the sides.

Analysis. Let ABG be the given triangle, and B the given point

in the side AB.
A

Suppose BF the line drawn from B which bisects the triangle;

therefore the triangle BBF is half of the triangle ABG.
Bisect BG in E, and join AB, BB, AF

t

then the triangle ABE is half of the triangle ABG:
hence the triangle ABE is equal to the triangle BBF;

take away from these equals the triangle BBE,
therefore the remainder A BE is equal to the remainder BEF.

But ABE, BEF are equal triangles upon the same base BE, and
on the same side of it.

they are therefore between the same parallels, (i. 39.)

that is, AF is parallel to BE,
therefore the point F is determined.

Synthesis. Bisect the base BG in E, join BE,
from A, draw AF parallel to BE, and join BF.

Then because BE is parallel to AF,
therefore the triangle ABE is equal to the triangle BEF; (i. 37.)

to each of these equals, add the triangle BBE,
therefore the whole triangle ABE is equal to the whole BBF,

but ABE is half of the whole triangle ABG;
therefore BBF is also half of the triangle ABG.

PROPOSITION VII. THEOREM.

Iffrom a point toithout a parallelogram lines be drawn to the extremities

of two adjacent sides, and of the diagonal which they include ; of the tri-

angles thus formed, that, whose base is the diagonal, is equal to the sum of
the other two.

Let ABGB be a parallelogram of which AG is one of the diagonals,

and let P be any point without it: and let AF, PC, BB, BB be
joined.

Then the triangles ABB, A VB are together equivalent to the tri-

angle ABC.
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Draw PGE parallel to AD or BC, and meeting AB in G, and LG
inE; and join DG, GC.

Then the triangles CBP, CBG are equal: (i. 37.)

and taking the common part CBII from each,

the remainders PHB, CIIG are equal.

Again, the triangles DAP, DAG are equal : (i. 37.)

also the triangles DAG, AGO are equal, being on the same bane
AG, and between the same parallels AG, DC:

therefore the triangle DAP is equal to the triangle AGO:
but the triangle PUB is equal to the triangle CIIG,

wherefore the triangles PUB, DAP are equal to AGC, CHG, or

A CII, add to these equals the triangle APH,
therefore the triangles APH, PUB, DAP are equal to APH,ACII.

that is, the triangles APB, DAP are together equal to the triangle

PAC.
If the point P be within the parallelogram, then the difference of

the triangles APB, DAP may be proved to be eaual to the triangle

PAC.

I.

8. Describe an isosceles triangle upon a given base and having
each of the sides double of the base, without using any proposition of

the Elements subsequent to the first three. If the base and sides be
given, what condition must be fulfilled with regard to the magnitude
of each of the equal sides in order that an isosceles triangle may be
constructed ?

9. In the fig. Euc. I. 5. If FC and BG meet in H, then prove

that AH bisects the angle BAG.
10. In the fig. Euc. I. 5. If the angle FBG be equal to the angle

ABC, and BG, CF, intersect in O; the angle BOF is equal to twice

the angle BA C.

1 1

.

From the extremities ofthe base of an isosceles triangle straight

lines are drawn perpendicular to the sides, the angles made by them
with the base are each equal to half the vertical angle.

12. A line drawn bisecting the angle contained by the two equal

sides of an isosceles triangle, bisects the third side at right angles.

13. If a straight line drawn bisecting the vertical angle of a ferl-

angie afflte bisect the base, the triangle is isosceles.
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14. Given two points one on each side of a given straight line

;

find a point in the line such that the angle contained by two line?

drawn to the given points may be bisected by the given line.

15. In the fig. Euc. i. 5, let F and G be the points in the sides

AB and A C produced, and let lines FIl and GK be drawn perpen-

dicular and equal to FC and GB respectively : also if BIT, CK, or

these lines produced meet in O; prove that BIT is equal to CK and
BO to CO.

16. From every point of a given straight line, the straight lines

drawn to each of two given points on opposite sides of the line are

equal: prove that the line joining the given points will cut the given

line at right angles.

17. If A be the vertex of an isosceles triangle ABC, and BA be
produced so that AD is equal to BA, and DC be drawn; shew that

BCD is a right angle.

18. The straight line DDF, drawn at right angles to BC the base

of an isosceles triangle ABC, cuts the side AB in D, and CA pro-

duced in E ; shew that ADD is an isosceles triangle.

19. In the fig. Euc. I. 1, if AB be produced both ways to meet
the circles in D and F, and from C, CD and CF be drawn ; the figure

CDF is an isosceles triangle having each of the angles at the base,

equal to one fourth of the angle at the vertex of the triangle.

20. Prom a given point, draw two straight lines making equal
angles with two given straight lines intersecting one another.

21. From a given point to draw a straight line to a given straight

line, that shall be bisected by another given straight line.

22. Place a straight line of given length between two given
straight lines which meet, so that it shall be equally inclined to each
of them.

23. To determine that point in a straight line from which the

straight lines drawn to two other given points shall be equal, pro-

vided the line joining the two given points is not perpendicular to the

given line.

24. In a given straight line to find a point equally distant from
two given straight lines. In what case is this impossible ?

25. If a line intercepted between the extremity of the base of an
isosceles triangle, and the opposite side (produced if necessary) be
equal to a side of the triangle, the angle formed by this line and the

base produced, is equal to three times either of the equal angles of the

triangle.

26. In the base BC of an isosceles triangle ABC, take a point 2).

and in CA take CF equal to CD, let ED produced meetAB produced
in F\ then 3.AEF= 2 right angles + AFF, or = 4 right angles + AFE.

27. If from the base to the opposite sides of an isosceles triangle,

three straight lines be drawn, making equal angles with the base, viz.

one from its extremity, the other two from any other point in it, these
two shall be together equal to the first.

28. A straight line is drawn, terminated by one of the sides of an
isosceles triangle, and by the other side produced, and bisected by
the base

;
prove that the straight lines, thus intercepted between the

e2
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vertex of the isosceles triangle, and this straight line, are togethoi

equal to the two equal sides of the triangle.

29. In a triangle, if the lines bisecting the angles at the base be
equal, the triangle is isosceles, and the angle contained by the bisect-

ing lines is equal to an exterior angle at the base of the triangle.

30. In a triangle, if lines be equal when drawn from the extremi-

ties of the base, (1) perpendicular to the sides, (2) bisecting the sides,

(3) making equal angles with the sides ; the triangle is isosceles

:

and then these lines which respectively join the intersections of the

sides, are parallel to the base.

II.

31. ABC is a triangle right-angled at B, and having the angle A
double the angle C; shew that the side BC is less than double the

side AB.
32. If one angle of a triangle be equal to the sum of the other

two, the greatest side is double of the distance of its middle point from
the opposite angle.

33. If from the right angle of a right-angled triangle, two straight

lines be drawn, one perpendicular to the base, and the other bisecting

it, they will contain an angle equal to the difference of the two acute

angles of the triangle.

34. If the vertical angle CAB of a triangle ABC be bisected by
AD, to which the perpendiculars CE, BF are drawn from the remain-
ing angles: bisect the base BC in G, join GE, GF, and prove these

lines equal to each other.

35. The difference of the angles at the base of ?ny triangle, is

double the angle contained by a line drawn from the vertex perpen-
dicular to the base, and another bisecting the angle at the vertex.

36. If one angle at the base of a triangle be double of the other,

the less side is equal to the sum or difference of the segments of the
base made by the perpendicular from the vertex, according as the

angle is greater or less than a right angle.

37. If two exterior angles of a triangle be bisected, and from the

point of intersection of the bisecting lines, a line be drawn to the op-

posite angle of the triangle, it will bisect that angle.

38. From the vertex of a scalene triangle draw a right line to

the base, which shall exceed the less side as much as it is exceeded
by the greater.

39. Divide a right angle into three equal angles.

40. One of the acute angles of a right-angled triangle is thre •<

times £as great as the other; trisec the smaller of these.

41. Prove that the sum of the distances of any point within
a triangle from the three angles is greater than half the perimeter-

of the triangle.

42. The perimeter of an isosceles triangle is kss than that of any
other equal triangle upon the same b se.

43. If from the angles of a tria gle ABC, straight lines ADE,
BDF, CDG be drawn through a point D to the opposite sides.,

Prove that the sides of the triangle are together greater than the three
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lines drawn to the point D, and less than twice the same, but greater

than two-thirds of the lines drawn through the point to the opposite

sides.

44. In a plane triangle an angle is right, acute or obtuse, ac-

cording as the line joining the vertex of the angle with the middle

point of the opposite side is equal to, greater or less than half of

that side.

45. If the straight line AD bisect the angle A of the triangle

ABC, and BDE be drawn perpendicular to AD and meeting AC o\

A C produced in E, shew that BD = DE.
46. The side BC of a triangle ABC is produced to a point Dr

The angle ACB is bisected by a line CE which meets AB in A
A line is drawn through E parallel to BC and meeting AC in F,

and the line bisecting the exterior angle A CD, in G. Shew that

EF is equal to FG.
47. The sides AB, AC, of a triangle are bisected in D and E

respectively, and BE, CD, are produced until EF= EB, and GD = DC\
shew that the line GF passes through A.

48. In a triangle ABC, AD being drawn perpendicular to the

straight line BD which bisects the angle B, shew that a line drawn
from D parallel to BC will bisect A C.

49. If the sides of a triangle be trisected and lines be drawn
through the points of section adjacent to each angle so as to form
another triangle, this shall be in all respects equal to the first

triangle.

50. Between two given straight lines it is required to draw a
straight line which shall be equal to one given straight line, and
parallel to another.

51. If from the vertical angle of a triangle three straight lines be
drawn, one bisecting the angle, another bisecting the base, and the

third perpendicular to the base, the first is always intermediate in

magnitude and position to the other two.
52. In the base of a triangle, find the point from which, lines

drawn parallel to the sides of the triangle and limited by them, are equal.

53. In the base of a triangle, to find a point from which if two
lines be drawn, (1) perpendicular, (2) parallel, to the two sides of the

riangle, their sum shall be equal to a given line.

III.

54. In the figure of Euc. I. 1, the given line is produced to meet
either of the circles in P ; shew that P and the points of intersection

of the circles, are the angular points of an equilateral triangle.

55. If each of the equal angles of an isosceles triangle be one-
fourth of the third angle, and from one of them a line be drawn
at right angles to the base meeting the opposite side produced ; then
will the part produced, the perpendicular, and the remaining side,

form an equilateral triangle.

i 56. In the figure Euc. I. 1, if the sides CA, CB of the equilateral

triangle ABC be produced to meet the circles in F, G, respectively,

and if C be the point in which the circles cut one another on the
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other side of AB : prove the points F, C, G to be in the same straight

line ; and the figure CFG to be an equilateral triangle.

57. ABC is a triangle and the exterior angles ?X B and C
are bisected by lines Bl), CD respectively, meeting in D: shew
that the angle BBC and half the angle BAC make up a right

angle.

58. If the exterior angle of a triangle be bisected, and the angles

of the triangle made by the bisectors be bisected, and so on, the

triangles so formed will tend to become eventually equilateral.

59. If in the three sides AB, B C, CA of an equilateral triangle

ABC, distances AF, BF, CG be taken, each equal to a third of

one of the sides, and the points F, F, G be respectively joined

(1) with each other, (2) with the opposite angles : shew that the two
triangles so formed, are equilateral triangles.

IV.

60. Describe a right-angled triangle upon a given base, having
given also the perpendicular from the right angle upon the hy-

potenuse.

61. Given one side of a right-angled triangle, and the difference

between the hypotenuse and the sum of the other two sides, to con-

struct the triangle.

62. Construct an isosceles right-angled triangle, having given

(1) the sum of the hypotenuse and one side
; (2) their difference.

63. Describe a right-angled triangle of which the hypotenuse
and the difference between the other two sides are given.

64. Given the base of an isosceles triangle, and the sum or dif-

ference of a side and the perpendicular from the vertex on the base.

Construct the triangle.

65. Make an isosceles triangle of given altitude whose sides shall

pass through two given points and have its base on a given straight

line.

66. Construct an equilateral triangle, having given the length of

the perpendicular drawn from one of the angles on the opposite side.

67. Having given the straight lines which bisect the angles at the

base of an equilateral triangle, determine a side of the triangle.

68. Having given two sides and an angle of a triangle, construct

the triangle, distinguishing the different cases.

69. Having given the base of a triangle, the difference of the sides,

and the difference of the angles at the base ; to describe the triangle.

70. Given the perimeter and the angles of a triangle, to con-

struct it.

71. Having given the base of a triangle, and half the sum and
half the difference of the angles at the base ; to construct the triangle.

72. Having given two lines, which are not parallel, and a point

between them; describe a triangle having two of its angles in the

respective lines, and the third at the given point; and such that the

sides shall be equally inclined to the lines which they meet.

73. Construct a triangle, having given the three lines drawn from
the angles to bisect the sides opposite.
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74. Given one of the angles at the base of a triangle, the base
:

itself, and the sum of the two remaining sides, to construct the tri-

: angle.

75. Given the base, an angle adjacent to the base, and the dif-

ference of the sides of a triangle, to construct it.

76. Given one angle, a side opposite to it, and the difference of

the other two sides ; to construct the triangle.

77. Given the base and the sum of the two other sides of a

triangle, construct it so that the line which bisects the vertical

angle shall be parallel to a given line.

V.

78. From a given point without a given straight line, to draw a line

making an angle with the given line equal to a given rectilineal angle.

79. Through a given point A, draw a straight line ABC meeting
two given parallel straight lines in B and C, such that BC may be
equal to a given straight line.

80. If the line joining two parallel lines be bisected, all the lines

drawn through the point of bisection and terminated by the parallel

lines are also bisected in that point.

81. Three given straight lines issue from a point: draw another

straight line cutting them so that the two segments of it intercepted

between them may be equal to one another.

82. AB, AC are two straight lines, B and C given points in the

same; BD is drawn perpendicular to AC, and DE perpendicular to

AB ; in like manner CF is drawn perpendicular to AB, and FG to

AC. Shew that EG is parallel to BC.
83. ABC is aright-angled triangle, and the sides AC, AB are

produced to D and F; bisect KBC and BCD by the lines BE, CE,
and from E let fall the perpendiculars EF, ED. Prove (without

assuming any properties of parallels) that ADEF'\% a square.

84. Two pairs of equal straight lines being given, shew how to

construct with them the greatest parallelogram.

85. On the sides AB, BC, CD of a parallelogram are described

equilateral triangles ABE, CDF without, and BCG within the figure

;

prove Lhat EG is equal to one, and EG the other diagonal.

86. Having given one of the diagonals of a parallelogram, the

sum of the two adjacent sides and the angle between them, construct

the parallelogram.

87. One of the diagonals of a parallelogram being given, and the

angle which it makes with one of the sides, complete the parallelo-

gram, so that the other diagonal may be parallel to a given line.

88. ABCD, ABCD' are two parallelograms whose corres-

ponding sides are equal, but the angle A is greater than the angle

A', prove that the diameter A C is less than A! C, but BD greater

than BD'.
89. If in the diagonal of a parallelogram any two points equi-

distant from its extremities be joined with the opposite angles, a

figure will be formed which is also a parallelogram.

90. From each angle of a parallelogram a line is drawn making
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the same angle towards the same parts with an adjacent side, taken
always in the same order ; shew that these lines form another parallelo-

gram similar to the original one.

91 . Along the sides of a parallelogram taken in order, measure
AA' =BB = CC = DD' : the figure A'B'C'D' will be a parallelogram.

92. On the sides AB, BC, CD, DA, of a parallelogram, set off

AE, BF, CG, DH, equal to each other, and join AF, BG, CH,DE:
these lines form a parallelogram, and the difference of the angles

AFB, BGC, equals the difference of any two proximate angles of the

two parallelograms.

93. OB, OC are two straight lines at right angles to each other,

through any point P any two straight lines are drawn intersecting

OB, OC, in B, B', C9 C, respectively. If D and D' be the middle
points of BB' and CO, shew that the angle B'PD' is equal to the

angle DOB.
94. ABCD is a parallelogram of which the angle Cis opposite to

the angle A. If through A any straight line be drawn, then the dis-

tance of C is equal to the sum or difference of the distances of B and
Vf D from that straight line, according as it lies without or within the

parallelogram.

95. Upon stretching two chains AC, BD, across a field ABCD,
I find that BD and A

C

make equal angles with DC, and that AC
makes the same angle with AD that BD does with BC; hence prove
that AB is parallel to CD.

96. To find a point in the side or side produced of any parallelo-

gram, such that the angle it makes with the line joining the point

and one extremity of the opposite side, may be bisected by the line

joining it with the other extremity.

97. When the corner of the leaf of a book is turned down a second
time, so that the lines of folding are parallel and equidistant, the space

in the second fold is equal to three times that in the first.

VI.

98. If the points of bisection of the sides of a triangle be joined,

.he triangle so formed shall be one-fourth of the given triangle.

99. If in the triangle ABC, BC be bisected in D, AD joined

and bisected in E, BE joined and bisected in F, and CF joined and
bisected in G ; then the triangle EFG will be equal to one-eighth of

the triangle ABC.
100. Shew that the areas of the two equilateral triangles in

Prob. 59, p. 78, are respectively, one-third and one-seventh of the area

of the original triangle.

101. To describe a triangle equal to a given triangle, (1) when
the base, (2) when the altitude of the required triangle is given.

102. To describe a triangle equal to the sum or difference of two
given triangles.

103. Upon a given base describe an isosceles triangle equal to a

given triangle.

104. Describe a right-angled triangle equal to a given triangle

ABC.
105. To a given straight line apply a triangle which shall be equa)

J



ON BOOK I. 81

to a given parallelogram and have one of its angles equal to a given

rectilineal angle.

106. Transform a given rectilineal figure into a triangle whose
vertex shall be in a given angle of the figure, and whose base shall be

in one of the sides.

107. Divide a triangle by two straight lines into three parts which
when properly arranged shall form a parallelogram whose angles are

of a given magnitude.
108. Shew that a scalene triangle cannot be divided into two

parts which will coincide.

109. If two sides of a triangle be given, the triangle will be
greatest when they contain a right angle.

110. Of all triangles having the same vertical angle, and whose
bases pass through a given point, the least is that"whose base is bisected

in the given point.

111. Of all triangles having the same base and the same perimeter,

that is the greatest which has the two undetermined sides equal.

112. Divide a triangle into three equal parts, (1) by lines drawn
from a point in one of the sides : (2) by lines drawn from the angles

to a point within the triangle : (3) by lines drawn from a given point

within the triangle. In how many ways can the third case be done ?

113. Divide an equilateral triangle into nine equal parts.

114. Bisect a parallelogram, (1) by a line drawn from a point in

one of its sides : (2) by a line drawn from a given point within or

without it : (3) by a line perpendicular to one of the sides : (4) by a

line drawn parallel to a given line.

115. From a given point in one side produced of a parallelogram,

draw a straight line which shall divide the parallelogram into two
equal parts.

116. To trisect a parallelogram by lines drawn (1) from a given
point in one of its sides, (2) from one of its angular points.

VII.

117. To describe a rhombus which shall be equal to any given
quadrilateral figure.

118. Describe a parallelogram which shall be equal in area and
perimeter to a given triangle.

119. Find a point in the diagonal of a square produced, from which
if a straight line be drawn parallel to any side of the square, and
meeting another side produced, it will form together with the pro-

duced diagonal and produced side, a triangle equal to the square.

120. If from any point within a parallelogram, straight lines be
drawn to the angles, the parallelogram shall be divided into four tri-

angles, of which each two opposite are together equal to one-half of
the parallelogram.

121. HABCD be a parallelogram, and E any point in the dia-

gonal AC, or reproduced ; shew that the triangles EBC, EDO, are
equal, as also the triangles EBA and EBB.

122. ABCD is a parallelogram, draw DFG meeting BC in F
E 5
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and AB produced in G
;
join AF, CG ; then will the triangles A.B.I t

CFG be equal to one another.

123. ABCD is a parallelogram, E the point of intersection of its

diagonals, and K any point in AB. If KB, KC be joined, shew that

the figure BKJECis one-fourth of the parallelogram.

124. Let ABCD be a parallelogram, and O any point within it,

through O draw lines parallel to the sides of ABCD, and join OA,
OC; prove that the difference of the parallelograms DO, BO is twice

the triangle OA C.

125. The diagonals AC, BD of a parallelogram intersect in O, and

P is a point within the triangle A OB
;
prove that the difference of the

triangles ABB, CPD is equal to the sum of the triangles ABC, BPD.
126. IfK be the common angular point of the parallelograms

about the diameter AC {fig. Euc. I. 43.) and BD be the other dia-

meter, the difference of these parallelograms is equal to twice the

triangle BKD.
127. The perimeter of a square is less than that of any other paral-

lelogram of equal area.

128. Shew that of all equiangular parallelograms of equal peri-

meters, that which is equilateral is the greatest.

129. Prove that the perimeter of an isosceles triangle is greater

than that of an equal right-angled parallelogram of the same altitude.

VIII.

130. If a quadrilateral figure is bisected by one diagonal, the

second diagonal is bisected by the first.

131. If two opposite angles of a quadrilateral figure are equal,

shew that the angles between opposite sides produced are equal.

132. Prove that the sides of any four-sided rectilinear figure are

together greater than the two diagonals.

133. The sum of the diagonals of a trapezium is less than the sum
of any four lines which can be drawn to the four angles, from any
point within the figure, except their intersection.

134. The longest side of a given quadrilateral is opposite to the

shortest ; shew that the angles adjacent to the shortest side are together

greater than the sum of the angles adjacent to the longest side.

135. Give any two points in the opposite sides of a trapezium, in-

scribe in it a parallelogram having two of its angles at these points.

136. Shew that in every quadrilateral plane figure, two parallelo-

grams can be described upon two opposite sides as diagonals, such

that the other two diagonals shall be in the same straight line and equal.

131. Describe a quadrilateral figure whose sides shall be equal to

four given straight lines. What limitation is necessary ?

138. If the sides of a quadrilateral figure be bisected and the

points of bisection joined, the included figure is a parallelogram, and.

equal in area to half the original figure.

139. A trapezium is such, that the perpendiculars let fail on a

diagonal from the opposite angles are equal. Divide the trapezium

into four equal triangles, by straight lines drawn to the angles from a

point within \\.
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140. If two opposite sides of a trapezium be parallel to one another,

the straight line joining their bisections, bisects the trapezium.

141. If of the four triangles into which the diagonals divide a

trapezium, any two opposite ones are equal, the trapezium has two of

its opposite sides parallel.

142. If two sides of a quadrilateral are parallel but not equal,

and the other two sides are equal but not parallel, the opposite angles

of the quadrilateral are together equal to two right angles: and
conversely.

143. If two sides of a quadrilateral be parallel, and the line joining

the middle points of the diagonals be produced to meet the other

sides ; the line so produced will be equal to half the sum of the

parallel sides, and the line between the points of bisection equal to

half their difference.

144. To bisect a trapezium, (1) by a line drawn from one of its

angular points : (2) by a line drawn from a given point in one side.

145. To divide a square into four equal portions by lines drawn
from any point in one of its sides.

146. It is impossible to divide a quadrilateral figure (except it be
a parallelogram) into equal triangles by lines drawn from a point

within it to its four comers.

IX.

147. If the greater of the acute angles of a right-angled triangle,

be double the other, the square on the greater side is three times the
square on the other.

148. Upon a given straight line construct a right-angled triangle

such that the square on the other side may be equal to seven times
the square on the given line.

149. If from the vertex of a plane triangle, a perpendicular fall

upon the base or the base produced, the difference of the squares on
the sides is equal to the difference of the squares on the segments of

the base.

150. If from the middle point of one of the sides of a right-angled
triangle, a perpendicular be drawn to the hypotenuse, the difference

of the squares on the segments into which it is divided, is equal to the

square on the other side.

151. If a straight line be drawn from one of the acute angles of a

right-angled triangle, bisecting the opposite side, the square upon that

line is less than the square upon the hypotenuse by three times the
pquare upon half the line bisected.

152. If the sum of the squares on the three sides of a triangle be
equal to eight times the square on the line drawn from the vertex
to the point of bisection of the base, then the vertical angle is a

right angle.

153. If a line be drawn parallel to the hypotenuse of a right-

angled triangle, and each of the acute angles be joined with the
points where this line intersects the sides respectively opposite to

them, the squares on the joining lines are together equal to tha
squares on the hypotenuse and on the line drawn parallel to it.
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154. Let ACB, ADB be two right-angled triangles having a
common hypotenuse AB, join CD, and on CD produced both ways
draw perpendiculars AE, BF. Shew that CE> + CF2=DE2 + DF*.

155. If perpendiculars AD, BE, CF, drawn from the angles
on the opposite sides of a triangle intersect in G, the difference of

the squares on the sides AC, AB, is equal to the difference of the
squares on the lines CG' BG.

156. If ABC be a triangle of which the angle A is a right
angle ; and BE, CF be drawn bisecting the opposite sides re-

spectively : shew that four times the sum of the squares on BE
and CF is equal to five times the square on BC.

157. If ABC he an isosceles triangle, and CD be drawn per-
pendicular to AB; the sum of the squares on the three sides is

equal to

AD2 + 2. BIP + 3. CD\
158. The sum of the squares described upon the sides of a

rhombus is equal to the squares described on its diameters.
159. A point is taken within a square, and straight lines drawn

from it to the angular points of the square, and perpendicular to

the sides ; the squares on the first are double the sum of the
squares on the last. Shew that these sums are least when the
point is in the center of the square.

160. In the figure Euc. I. 47,

(a) Shew that the diagonals FA, AK of the squares on AB,
AC, lie in the same straight line.

(b) If DF, EKhe joined, the sum of the angles at the bases
of the triangles BED, CEK is equal to one right angle.

(c) If BG and CII be joined, those lines will be parallel.

(d) If perpendiculars be let fall from jFand K on BC pro-

duced, the parts produced will be equal ; and the perpendiculars
together will be equal to BC.

(e) Join GH, KE, FD, and prove that each of the triangles

so formed, equals the given triangle ABC.
(/) The sum of the squares on GH, KE, and FD will be

equal to six times the square on the hypotenuse.

(g) The difference of the squares on AB, A C, is equal to the
difference of the squares on AD, AE.

161. The area of any two parallelograms described on the two
sides of a triangle, is equal to that of a parallelogram on the base,

whose side is equal and parallel to the line drawn from the vertex
of the triangle, to the intersection of the two sides of the former
parallelograms produced to meet.

162. If one angle of a triangle be a right angle, and another
equal to two-thirds of a right angle, prove from the First Book of

Euclid, that the equilateral triangle described on the hypotenuse,
is equal to the sum of the equilateral triangles described upon the
sid as which contain the right angler
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DEFINITIONS.

I.

Every right-angled parallelogram is called a rectangle, and is said
to be contained by any two of the straight lines which contain one of
the right angles.

II.

In every parallelogram, any of the parallelograms about a diameter
together with the two complements, is called a gnomon.

a s D

f y

" Thus the parallelogram HG together with the complements AF, FC,
is the gnomon, which is more briefly expressed by the letters AGK, or

EHC, which are at the opposite angles of the parallelograms which make
the gnomon."

PROPOSITION I. THEOREM.

If there be two straight lines, one of which is divided into any number
ofparts; the rectangle contained by the two straight lines, is equal to the

rectangles contained by the undivided line, and the several parts of the

divided line.

Let A and i?<7be two straight lines;

and let JBC be divided into any parts BD, DE, EC, in the points D, E.
Then the rectangle contained by the straight lines A and EC, shall

be equal to the rectangle contained by A and BD, together with that

contained by A and BE, and that contained by A and EC.
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B DEC

From the point B, draw BFat right angles to BC, (I. 11.)

and make BG equal to A
;

(i. 3.)

through G draw GH parallel to J5C, (i. 31.)

and through E, E, C, draw EK, EL, CH parallel to EG, meeting
GH'mK, L, H.

Then the rectangle BH is equal to the rectangles BK, EL, EH.
And BIZ is contained by A and BC,

for it is contained by GB, BC, and GB is equal to A :

and the rectangle BK is contained by A, BE,
for it is contained by GB, BE, of which GB is equal to A :

also EL is contained by A, EE,
because EK, that is, BG, (i. 34.) is equal to A

;

and in like manner the rectangle EH is contained by A, EC:
therefore the rectangle contained by A, BC, is equal to the several

rectangles contained by A, BE, and by A, EE, and by A, EC.
Wherefore, if there be two straight lines, &c. Q. E.D.

PROPOSITION II. THEOREM.

If a straight line be divided into any two parts, the rectangles contained

by the xohole and each of the parts, are together equal to the square on the

whole line.

Let the straight line AB be divided into any two parts in the point C.

Then the rectangle contained by AB, BC, together with that con-

tained by AB, A C, shall be equal to the square on AB,
A C B

Upon AB describe the square AEEB, (i. 46.) and through (7 draw
CF parallel to AE or BE, (i. 31.) meeting EE in F.

Then AE is equal to the rectangles AF, CE.
And AE is the square on AB

;

and ^jFis the rectangle contained by BA, AC;
for it is contained by EA, A C, of which EA is equal to AB :

and CE is contained by AB, BC,
for BE is equal to AB

:

therefore the rectangle contained by AB, A C, together with the

rectangle AB, BC is equal to the square on AB.
If therefore a straight line, &c. Q.E.D.
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PROPOSITION III. THEOREM.

If a straight line be divided into any two parts, the rectangle contained by

ihe whole and one of the parts, is equal to the rectangle contained by the two
parts, together with the square on the aforesaid part,

. Let the straight line AB be divided into any two parts in the point C.

Then the rectangle AB, B C, shall be equal to the rectangle

A C, CB, together with the square on B C.

AC B

Upon BC describe the square CDEB, (i. 46.) and produce ED to F,
through A drawAJfparallel to CD or BE, (i. 31.) meetingEFin F.

Then the rectangle AE is equal to the rectangles AD, CE.
And AE is the rectangle contained by AB, BC,

for it is contained by AB, BE, of which BE is equal to BC:
and AD is contained by A C, CB, for CD is equal to CB

:

and CE is the square on BC:
therefore the rectangle AB, BC, is equal to the rectangle AC, CB,

together with the square on B C.

If therefore a straight line be divided, &c. Q. E. D.

PROPOSITION IV. THEOREM.
If a straight line be divided into any txco parts, the square on the whole

line is equal to the squares on the two parts, together with twice the rectangle

contained by the parts.

Let the straight line AB be divided into any two parts in C.

Then the square on AB shall be equal to the squares on AC, and
CB, together with twice the rectangle contained by AC, CB.

A C B

__GA

F E

Upon AB describe the square ADEB, (i. 46.) join BD,
through Cdraw CGF parallel to AD or BE, (i. 31.) meeting BD

in G and D^ in F;
and through G draw HGK parallel to AB or DE, meeting AD in

H, zxtiiBE'mK;
Then, because CF is parallel to AD and BD falls upon them,

therefore the exterior angle BGCis equal to the interior and opposite

angle BDA
;

(I. 29.)

but the angle BDA is equal to the angle DBA, (i. 5.)

"because BA is equal to A.D, being sides of a square;
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wherefore the angle BGC is equal to the angle DBA or GBC\
and therefore the side BC is equal to the side CG; (i. 6.)

but .ECis equal also to GK, and CG to BK; (i. 34.)

wherefore the figure CGKB is equilateral.

It is likewise rectangular
;

for, since CG is parallel to BK, and BC meets them,
therefore the angles KBC, BCG are equal to two right angles

;
(I. 29.)

but the angle KBC is a right angle
;

(def. 30. constr.)

wherefore BCG is a right angle :

and therefore also the angles CGK, GKB, opposite to these, are right

angles
;

(I. 34.)

wherefore CGKB is rectangular :

but it is also equilateral, as was demonstrated

;

wherefore it is a square, and it is upon the side CB.
For the same reason HF is a square,

and it is upon the side HG, which is equal to A C. (I. 34.)

Therefore the figures HF, CK, are the squares on A C, CB.
And because the complement AG is equal to the complement GE,

(I. 43.)

and that AG is the rectangle contained by A C, CB,
for GC is equal to CB

;

thereforp GE is also equal to the rectangle A C, CB
;

wherefore A G, GE are equal to twice the rectangle A C, CB
;

and HF, CK are the squares on A C, CB

;

wherefore the four figures HF, CK, AG, GE, are equal to the

squares on A C, CB, and twice the rectangle A C, CB :

but HF, CK, AG, GEmske up the whole figure ADEB, which
is the square on AB

;

therefore the square on AB is equal to the squares on A C, CB, and
twice the rectangle AC, CB.

Wherefore, if a straight line be divided, &c Q.E.D.

Cor. From the demonstration, it is manifest, that the parallelo-

grams about the diameter of a square, are likewise squares.

PROPOSITION V. THEOREM.

If a straight line be divided into two equal parts, and also into two

unequal parts ; the rectangle contained by the unequal parts, together with

the square on the line between the points of section, is equal to the square on

half the line.

Let the straight line AB be divided into two equal parts in the

point C, and into two unequal parts in the point D.
Then the rectangle AD, DB, together with the square on CD, shall

be equal to the square on CB.

a c D B

E G F
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Upon CB describe the square CEFB, (i. 46.) join BE,
through D (hawDHG parallel to CB or .frF, (i. 31.) meeting BE

in If, and BF in G,

and through H draw iTZiilf parallel to CB or 2?JF, meeting CB
in X, and BF in Jf

;

also through A draw -4JT parallel to CL or _Z?3.f, meeting MLKin K.
Then because the complement CH is equal to the complement JIF,

(I. 43.) to each of these equals add DM;
therefore the whole CM is equal to the whole DF;

but because the line A C is equal to CB,
therefore AL is equal to CM, (I. 36.)

therefore also ^4Z is equal to DF;
to each of these equals add CH,

and therefore the whole AH is equal to DF and CH":
but AHis the rectangle contained by AD, DB, for DHis equal to -DJ5;

and DJP together with CH is the gnomon CMG

;

therefore the gnomon CMG is equal to the rectangle AD, DB

:

to each of these equals add LG, which is equal to the square on
CD; (II. 4. Cor.)

therefore the gnomon CMG, together with LG, is equal to the

rectangle AD, DB, together with the square on CD

:

but the gnomon CMG and LG make up the whole figure CEFB,
which is the square on CB

;

therefore the rectangle AD, DB, together with the square on CD
is equal to the square on CB.

"Wherefore, if a straight line, &c. Q. E. D.

Cor. From this proposition it is manifest, that the difference of

the squares on two unequal lines A C, CD, is equal to the rectangle

contained by their sum AD and their difference DB.

PROPOSITION VI. THEOREM.

If a straight line be bisected, and produced to any point; the rectangle

contained by the whole line thus produced, and the part of it produced,
together with the square on half the line bisected, is equal to the square on
the straight line which is made up of the half and the part produced.

Let the straight line ABhe bisected in C, and produced to the point _D.

Then the rectangle AD, DB, together with the square on CB, shall

be equal to the square on CD.
A C ED

l] h /

/
E G F

Upon CD describe the square CBFD, (i. 46.) and join DE,
through B draw BHG parallel to CB or DF, (i. 31.) meeting DB

in H, and EF in G
;

through H draw KZM parallel to AD or EF, meeting DF in
M, and CE in L;

and through A draw A IT parallel to CL or DM, meeting MLKin K.
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Then because the line A C is equal to CB,
therefore the rectangle AL is equal to the rectangle CII, (I. 86.)

but CHis equal to HF; (I. 43.)

therefore AL is equal to ILF;
to each of these equals add CM;

therefore the whole AM is equal to the gnomon CMG :

but AM is the rectangle contained by AD, DB,
for DM is equal to DB: (II. 4. Cor.)

therefore the gnomon CMG is equal to the rectangle AD, DB

:

to each of these equals add LG which is equal to the square on C
therefore the rectangle AD, DB, together with the square on CB,

equal to the gnomon CMG, and the figure LG

;

but the gnomon CMG and LG make up the whole figure CEFD,
which is the square on CD

;

therefore the rectangle AD, DB, together with the square on CB,
is equal to the square on CD.

Wherefore, if a straight line, &c. Q.E.D.

PROPOSITION VII. THEOREM.
If a straight line be divided into any two parts, the squares on the whole

line, and on one of the parts, are equal to twice the rectangle contained by

Uie whole and that part, together with the square on the other pari.

Let the straight line AB be divided into any two parts in the point C.

Then the squares on AB, BC shall be equal to twice the rectangle

AB, BC, together with the square on AC.
A C B

b./

Upon AB describe the square ADLIB, (i. 46.) and join BD,
through (7 draw CF parallel to AD or BE (i. 31.) meeting BD'm

G, and DE in F;
through G draw LLGK parallel to AB or DE, meeting AD in II,

and BE in K.
Then because AG is equal to GE, (i. 43.)

add to each of them CIC;
therefore the whole AK is equal to the whole CE;

and therefore AK, CE, are double of AK:
but AK, CE, are the gnomon A.KF and the square CK;

therefore the gnomon AKF and the square CK are double of AK:
but twice the rectangle AB, BC, is double of AK,

for BLtis equal to BC; (II. 4. Cor.)

therefore the gnomon AKF and the square CK, are equal to twice the

rectangle AB, BC;
to each of these equals add LLF, which is equal to the square on A C
therefore the gnomon AKF, and the squares CK, HF, are equal to
twice the rectangle AB, BC, and the square on AC;
but the gnomon AKF, together with the squares CK, HF, make
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up the whole figure ABEB and CK, which are the squares on AB
and BC;

therefore the squares on AJB and B Care equal to twice the rectangle

AB, BC, together with the square on AC.
Wherefore, if a straight line, &c. Q. E. D.

PROPOSITION VIII. THEOREM.

If a straight line be divided into any two parts, four times the rectangle

contained bxj the whole line, and one of the parts, together with the square o?*

the other part, is equal to the square on the straight line, which is made up
of the whole and that part.

Let the straight line AB be divided into any two parts in the point C.

Then four times the rectangle AB, BC, together with the square on

A C, shall be equal to the square on the straight line made up of AB
and BC together

A C B D

% iZ£ o

Gild/

/
E II L F

Produce AB to D, so that BB be equal to CB, (i. 3.)

upon AB describe the square AEFB, (i. 46.) and join BE,
through B, C, draw BL, CH parallel to AE or BF, and cutting BE

in the points K, P respectively, and meeting EF in L, H;
through K, P, draw MGKN, XPRO parallel to AB or EF.
Then because CB is equal to BB, CB to GK, and BB to KN;

therefore GK is equal to KN
;

for the same reason, PR is equal to RO
;

and because CB is equal to BB, and GK to KN,
therefore the rectangle CK is equal to BN, and GR to RN; (i. 36.)

but CX is equal to RN, (i. 43.)

because they are the complements of the parallelogram CO

;

therefore also BNis equal to 6r.K;

and the four rectangles BN, CK, GR, RN, are equal to one another,

and so are quadruple of one of them CK,
Again, because CB is equal to BB, andBB to BK, that is, to CG;

and because CB is equal to GK, that is, to GP
;

therefore <76r is equal to GP.
And because CG is equal to GP, and PJ? to PO,

therefore the rectangle A G is equal to MP, and PL to JR.F;

but the rectangle MP is equal to PL, (i. 43.)

because they are the complements of the parallelogram ML :

wherefore also AG is equal to Pi77
:

therefore the four rectangles ^4 G, MP, PL, RF, are equal to one
another, and so are quadruple of one of them AG.

And it was demonstrated, that the four CK, BN, GR, an&RN, are
quadruple of CK:
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therefore the eight rectangles which contain the gnomon A OH, are
quadruple of AK.
And because AK is the rectangle contained by AB, BC,

for BK is equal to BC;
therefore four times the rectangle AB, BC is quadruple of AX:
but the gnomon AOH was demonstrated to be quadruple of AK;

therefore four times the rectangleAB,BC is equal to the gnomonA OH;
to each of these equals ad&.XH, which is equal to the square on AC;
therefore four times the rectangle AB, BC, together with the square

on AC, is equal to the gnomon AOH and the square XH;
but the gnomon AOH and XH make up the figure AEFD, which is

the square on AD

;

therefore four times the rectangle AB, BC together with the square

on AC, is equal to the square on AD, that is, on AB and BC added
together in one straight line.

Wherefore, if a straight line, &c, Q. E. D.

PROPOSITION IX. THEOREM.

If a straight line be divided into two equal, and also into two unequal

parts ; the squares on the two xvnequal parts are together double of the square

on half the line, and of the square on the line between the points of section.

Let the straight line AB be divided into two equal parts in the point

C, and into two unequal parts in the point D.
Then the squares on AD, DB together, shall be double of the

squares on A C, CD.
E

c D B

From the point Cdraw CE at right angles to AB, (i. 11.)

make CE equal to A Cor CB, (I. 3.) and join EA, EB

;

through D draw DP parallel to CE, meeting EB in F, (I. 31.)

through Pdraw FG parallel to BA, and join AF.
Then, because A C is equal to CE,

therefore the angle AEC is equal to the angle EA C; (I. 5.)

and because A CE is a right angle,

therefore the two other angles AEC, EA C of the triangle are together

equal to a right angle
;

(I. 32.)

and since they are equal to one another

;

therefore each of them is half a right angle.

For the same reason, each of the angles CEB,EBC is half a right angle;

and therefore the whole AEB is a right angle.

And because the angle GEF is half a right angle,

and EGFa right angle,

for it is equal to the interior and opposite angle ECB, (I. 29.)

therefore the remaining angle EFG is half a right angle

;

wherefore the angle GEF is equal to the angle EFG,
and the side GF equal to the side EG. (i. 6.)
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Again, because the angle at B is half a right angle,

and FDB a right angle,

for it is equal to the interior and opposite angle ECB, (i. 29.)

therefore the remaining angle BFD is half a right angle

;

wherefore the angle at B is equal to the angle BFD,
and the side DF equal to the side DB. (i. 6.)

And because A C is equal to CE,
the square on A C is equal to the square on CE;

therefore the squares on AC, CF are double of the square on A C;
but the square on AE is equal to the squares on AC, CE, (i. 47.)

because A CE is a right angle

;

therefore the square on AE is double of the square on A C.

Again, because EG is equal to GF,
the square on EG is equal to the square on GF;

therefore the squares on EG, GF are double of the square on GF;
but the square on EF is equal to the squares on EG, GF; (i. 47.)

therefore the square on EF is double of the square on GF;
and GF is equal to CI); (I. 34.)

therefore the square on EF is double of the square on CD
;

but the square on AE is double of the square on AC;
therefore the squares on AE, EF are double of the squares on A C, CD;

but the square on AF is equal to the squares on AE, EF,
because AEF is a right angle : (i. 47.)

therefore the square on AF is double of the squares on AC, CD:
but the squares on AD, DF are equal to the square on AF;

because the angle ADF is a right angle
;

(i. 47.)

therefore the squares on AD, DFaze double of the squares onA C, CD

;

and DF is equal to DB

;

therefore the squares on AD, DB are double of the squares onA C, CD.
If therefore a straight line be divided, &c. Q. E. D.

PROPOSITION X. THEOREM.

If a straight line be bisected, and produced to any point, the square on

the whole line thus produced, and the square on the part of it produced, are
together double of the square on half the line bisected, and of the square on
the line made up of the half and the part produced.

Let the straight line AB be bisected in C, and produced to the
point D.

Then the squares on AD, DB, shall be double of the squares on

AC, CD.
E

From the point Cdraw CE at right angles to AB, (I. 11.)

make CE equal to AC or CB, (I. 3.) and join AE, EB

;

through E draw EF parallel to AB, (I. 31.)

and thipugh D draw DF parallel to CE, meeting EF'm F.
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Then because the straight line EF meets the parallels CE, FDi
therefore the angles CEF, EFD are equal to two right angles

;
(i. 29.

J

and therefore the angles BEF, EFD are less than two right angles.

But straight lines, which with another straight line make the in-

terior angles upon the same side of a line, less than two right angles,

will meet if produced far enough
;

(I. ax. 12.)

therefore EJB. FD will meet, if produced towards B, D
,

let them be produced and meet in G, and join AG.
Then, because A C is equal to CE,

therefore the angle CEA is equal to the angle EAC\ (i. 5.)

and the angle A CE is a right angle
;

therefore each of the angles CEA, EA C is half a right angle, (i. 32.)

For the same reason,

each of the angles CEB, EBC is half a right angle
;

therefore the whole AEB is a right angle.

And because EB C is half a right angle,

therefore DBG is also half a right angle, (i. 15.)

for they are vertically opposite
;

but BDG is a right angle,

because it is equal to the alternate angle DCE; (I. 29.)

therefore the remaining angle DGB is half a right angle

;

and is therefore equal to the angle DBG;
wherefore also the side BD is equal to the side DG. (i. 6.)

Again, because EGF is half a right angle, and the angle at F is a

right angle, being equal to the opposite angle ECD, (i. 34.)

therefore the remaining angle FEG is half a right angle,

and therefore equal to the angle EGF;
wherefore also the side GF is equal to the side FE. (i. 6.)

And because EC is equal to CA
;

the square on EC is equal to the square on CA

;

therefore the squares on EC, CA are double of the square on CA

;

but the square on EA is equal to the squares on EC, CA
;

(I. 47.)

therefore the square on EA is double of the square on A C.

Again, because GF is equal to FE,
the square on 6?^ is equal to the square on FE;

therefore the squares on GF, FE are double of the square on FE

;

but the square on EG is equal to the squares on GF, FE
;

(i. 47.)

therefore the square on EG is double of the square on FE;
and FE is equal to CD

;
(i. 34.)

wherefore the square on EG is double of the square on CD

;

but it was demonstrated,

that the square on EA is double of the square on AC;
therefore the squares on EA, EG are double of the squares onA C, CD \

but the square on A G is equal to the squares on EA, EG; (i. 47.)

therefore the square on A G is double of the squares on AC, CD:
but the squares on AD, DG are equal to the square on AG

;

therefore the squares on AD, DGaxe double of the squares onA C, CD

;

but DG is equal to DB

;

therefore the squares on AD, DB are double of the squares on A C, CD.
Wherefore, if a straight line, &c. Q- K. u
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PROPOSITION XI. PROBLEM.

To divide a given straight line into two parts, so that the rectangle con-

tained by the whole and one of the parts, shall he equal to the square on

the other part.

Let AB be the given straight line.

It is required to divide AB into two parts, so that the rectangle

contained by the whole line and one of the parts, shall be equal

to the square on the other part.

F G

Upon AB describe the square ACJDB; (I. 48.)

bisect A C in E, (i. 10.) and join BE,
produce CA to F, and make EF equal to EB, (l. 3.)

upon AF describe the square FGHA. (i. 46.)

Then AB shall be divided in H, so that the rectangle AB, BII is

equal to the square on AH.
Produce Gil to meet CD in K.

Then because the straight line AC is bisected in E, and produced to F,

therefore the rectangle CF, FA together with the square on AE,
is equal to the square on EF; (n. 6.)

but EF is equal to EB

;

therefore the rectangle CF, FA together with the square on AE, is

equal to the square on EB

;

but the squares on BA, AE are equal to the square on EB, (i. 47.)

because the angle EAB is a right angle
;

therefore the rectangle CF, FA, together with the square on AE,
is equal to the squares on BA, AE;
take away the square on AE, which is common to both

;

therefore the rectangle contained by CF, FA is equal to the square
on^.
But the figure FX is the rectangle contained by CF, FA,

for FA is equal to FG

;

and AD is the square on AB

;

therefore the figure FK is equal to AD

;

take away the common part AK,
therefore the remainder FH is equal to the remainder HD

;

but HD is the rectangle contained by AB, BH,
for AB is equal to BD

;

and FH is the square on AH;
therefore the rectangle AB, BH, is equal to the square on AII,

Wherefore the straight line AB is divided in H, so that the
rectangle A ft, BHis equal to the square on AH. q.e.f.
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PROPOSITION XII. THEOREM.
In obtuse-angled triangles, if a perpendicular be drawn from either oj

the acute angles to the opposite side produced, the square on the side sub-

tending the obtuse angle, is greater than the squares on the sides containing

the obtuse angle, bg ticice the rectangle contained by the side upon which.,

when produced, the perpendicular falls, and the straight line intercepted

without the triangle between the perpendicular and the obtuse angle.

Let ABC be an obtuse-angled triangle, having the obtuse angle

ACB, and from the point A, let AD be drawn perpendicular to B C
produced.

Then the square on AB shall be greater than the squares on A C,

CB, by twice the rectangle BC, CD.
A

Because the straight line BD is divided into two parts in the point C,

therefore the square on BD is equal to the squares on BC, CD,
and twice the rectangle BC, CD; (II. 4.)

to each of these equals add the square on DA
;

therefore the squares on BD, DA are equal to the squares on BC,
CD, DA, and twice the rectangle BC, CD;

but the square on BA is equal to the squares on BD, DA, (I. 47.)

because the angle at D is a right angle

;

and the square on CA is equal to the squares on CD, DA

;

therefore the square on BA is equal to the squares on B C, CA, and

twice the rectangle BC, CD;
that is, the square on BA is greater than the squares on BC, CA, by

twice the rectangle BC, CD.
Therefore in obtuse-angled triangles, &c. Q.E.D.

PROPOSITION XIII. THEOREM.
In every triangle, the square on the side subtending either of the acute

angles, is less than the squares on the sides containing that angle, by twice

the rectangle contained by either of these sides, and the straight line inter-

cepled between the acute angle and the perpendicular let fall upon it from
the opposite angle.

Let ABC be any triangle, and the angle at B one of its acute

angles, and upon BC, one of the sides containing it, let fall the

perpendicular AD from the opposite angle. (I. 12.)

Then the square on A C opposite to the angle B, shall be less thna

the squares on CB, BA, by twice the rectangle CB, BD,
A
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First, let AD fall within the triangle ABC.
Then because the straight line CB is divided into two parts in 7>,

the squares on CB, BD are equal to twice the rectangle contained by

CB, BD, and the square on DC-, (n. 7.)

to each of these equals add the square on AD

;

therefore the squares on CB, BD, DA, are equal to twice the

rectangle CB, BD, and the squares on AD, DC;
but the square on AB is equal to the squares on BD, DA, (i. 47.)

because the angle BDA is a right angle

;

and the square on A C is equal to the squares on AD, DC',
therefore the squares on CB, BA are equal to the square on A C,

and twice the rectangle CB, BD

:

that is, the square on AC alone is less than the squares on CB, BA,
by twice the rectangle CB, BD.

Secondly, let AD fall without the triangle ABC

Then, because the angle at J) is a right angle,

the angle ACB is greater than a right angle
;

(i. 16.)

and therefore the square on AB is equal to the squares on A C, CB,
and twice the rectangle BC, CD; (n. 12.)

to each of these equals add the square on BC;
therefore the squares on AB, BC axe equal to the square on AC,

twice the square on B C, and twice the rectangle B C, CD

;

but because BD is divided into two parts in C,

"therefore the rectangle DB, BC is equal to the rectangle BC, CD,
and the square on BC; (n. 3.)

and the doubles of these are equal

;

that is, twice the rectangle DB, BC is equal to twice the rectangle

BC, CD and twice the square on BC:
therefore the squares on AB, BC are equal to the square on AC,

and twice the rectangle DB, BC:
wherefore the square on A C alone is less than the squares on AB, BC;

by twice the rectangle DB
t
BC.

Lastly, let the side A

C

be perpendicular to BC.

b c

Then BC is the straight line between the perpendicular and the

acute angle at B

;

and it is manifest, that the squares on AB, BC, are equal to the

square on AC, and twice the square on BC. (I. 47.)

Therefore in any triangle, &c. Q. E. D.

F
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PROPOSITION XIV. PROBLEM.

lb describe a square that shall be equal to a given rectilineal figure.

Let A be the given rectilineal figure.

It is required to describe a square that shall be equal to A.

Describe the rectangular parallelogram BCDE equal to the recti

lineal figure A. (J. 45.)

Then, if the sides of it, BE, ED, are equal to one another,

it is a square, and what was required is now done.

But if BE, ED, are not equal,

produce one of them BE to F, and make EF equal to ED,
bisect BF in G; (I. 10.)

from the center G, at the distance GB, or GF, describe the semicircle

BIIF,
and produce DE to meet the circumference in H.

The square described upon EH shall be equal to the given recti-

lineal figure A.
Join GIL

Then because the straight line BF is divided into two equal parts

in the point G, and into two unequal parts in the point E;
therefore the rectangle BE, EF, together with the square on EG,

is equal to the square on GF; (il. 5.)

but GFis equal to GH\ (def. 15.)

therefore the rectangle BE, EF, together with the square on EG, is

equal to the square on GEL;
but the squares on HE, EG are equal to the square on GH; (i. 47.)

therefore the rectangle BE, EF, together with the square on EG.
is equal to the squares on HE, EG

;

take away the square on EG, which is common to both

;

therefore the rectangle BE, EF is equal to the square on HE.
But the rectangle contained by BE, EF is the parallelogram BD.

because EF is equal to ED
;

therefore BD is equal to the square on EH',
but BD is equal to the rectilineal figure A

;
(constr.)

therefore the square on EH is equal to the rectilineal figure A.
Wherefore a square has been made equal to the given rectilireal

figure A, namely, the square described upon EH. q.e„p.
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In Book i, Geometrical magnitudes of the same kind, lines, angles

and surfaces, more particularly triangles and parallelograms, are com-
pared, either as being absolutely equal, or unequal to one another.

In Book ii, the properties of right-angled parallelograms, but without
reference to their magnitudes, are demonstrated, and an important
extension is made of Euc. I. 47, to acute-angled and obtuse-angled
triangles. Euclid has given no definition of a rectangular parallelogram
or rectangle : probably, because the Greek expression TTapaAXvoXypa/xixou

GpQoywviov, or bpQoywviov simply, is a definition of the figure. In English,

the term rectangle, formed from rectus angulus, ought to be defined before

its properties are demonstrated. A rectangle may be defined to be a
parallelogram having one angle a* right angle, or a right angled paral-

lelogram ; and a square is a rectangle having all its sides equal.

As the squares in Euclid's demonstrations are squares described or

supposed to be described on straight lines, the expression "the square on
AB," is a more appropriate abbreviation for "the square described on tlie

line AB," than " the square of AB." The latter expression more fitly

expresses the arithmetical or algebraical equivalent for the square on the
line AB.

In Euc. i. 35, it may be seen that there may be an indefinite number of

parallelograms on the same base and between the same parallels whose
areas are always equal to one another ; but that one of them has all its

angles right angles, and the length of its boundary less than the boundary
of any other parallelogram upon the same base and between the same
parallels. The area of this rectangular parallelogram is therefore deter-

mined by the two lines which contain one of its right angles. Hence it is

stated in Def. 1, that every right-angled parallelogram is said to be con-

tained by any two of the straight lines which contain one of the right

angles. ISTo distinction is made in Book n, between equality and identity,

as the rectangle may be said to be contained by two lines which are

equal respectively to the two which contain one right angle of the figure.

It may be remarked that the rectangle itself is bounded by four straight

lines.

It is of primary importance to discriminate the Geometrical conception
of a rectangle from the Arithmetical or Algebraical representation of it.

The subject of Geometry is magnitude not number, and therefore it would
be a departure from strict reasoning on space, to substitute in Geometrical

demonstrations, the Arithmetical or Algebraical representation of a rect-

angle for the rectangle itself. It is, however, absolutely necessary that

the connexion of number and magnitude be clearly understood, as far as

regards the representation of lines and areas.

All lines are measured by lines, and all surfaces by surfaces. Some
one line of definite length is arbitrarily assumed as the linear unit, and
the length of every other line is represented by the number of linear units,

contained in it. The square is the figure assumed for the measure of

surfaces. The square unit or the unit of area is assumed to be that square,

the side of which is one unit in length, and the magnitude of every

surface is represented by the number of square units contained in
it. But here it may be remarked, that the properties of rectangles*

and squares in the Second Book of Euclid are proved independently
F 2
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of the consideration, whether the sides of the rectangles can be repre-
sented by any multiples of the same linear unit. If, however, the
Sides of rectangles are supposed to be divisible into an exact number
of linear units, a numerical representation for the area of a rectangle
may be deduced.

On two lines at right angles to each other, take AB equal to 4, and
AD equal to 3 linear units.

Complete the rectangle ABCD,, and through the points of division of
AB, AD, draw EL, FM, GN parallel to AD ; and HP, KQ parallel to
A B respectively.

A_ fl F G B

J 7
H

|

D L M N C

Then the whole rectangle AC is divided into squares, all equal to each
other.

And AC is equal to the sum of the rectangles AL, EM, FN, GC; (n. 1.)

also these rectangles are equal to one another, (r. 36.)

therefore the whole AC is equal to four times one of them AL.
Again, the rectangle AL is equal to the rectangles EH, HR, RD,

and these rectangles, by construction, are squares described upon the
equal lines AH, HK, KB, and are equal to one another.

Therefore the rectangle AL is equal to 3 times the square on AH,
but the whole rectangle AC is equal to 4 times the rectangle AL,

therefore the rectangle AC is 4 x 3 times the square on AH, or 12

square units

:

that is, the product of the two numbers which express the number of

linear units in the two sides, will give the number of square units in the
rectangle, and therefore will be an arithmetical representation of its area.

And generally, if AB, AD, instead of 4 and 3, consisted of a and b

linear units respectively, it may be shewn in a similar manner, that the
area of the rectangle A C would contain ab square units ; and therefore the
product ab is a proper representation for the area of the rectangle AC.

Hence, it follows, that the term rectangle in Geometry corresponds to

the term product in Arithmetic and Algebra, and that a similar com-
parison may be made between the products of the two numbers which
represent the sides of rectangles, as between the areas of the rectangles

themselves. This forms the basis of what are called Arithmetical or

Algebraical proofs of Geometrical properties.

If the two sides of the rectangle be equal, or if b be equal to a,

the figure is a square, and the area is represented by aa or a8
.

Also, since a triangle is equal to the half of a parallelogram of the

same base and altitude
;

Therefore the area of a triangle will be represented by half the rect-

angle which has the same base and altitude as the triangle : in other

words, if the length of the base be a unit-, and the altitude be b units
;

Then the area of the triangle is algebraically represented by \ab.

The demonstrations of the first eight propositions, exemplify the

obvious axiom, that, " the whole area of every figure in each case, is

equal to all the parts of it taken together."
Def. 2. The parallelogram EK together with the complements AF.
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FC, is also a gnomon, as well as the parallelogram HG together with the

same complements.
Prop. i. For the sake of brevity of expression, " the rectangle con-

tained by the straight lines AB, BC," is called "the rectangle AB, BC\"
and sometimes " the rectangle ABC."

To this proposition may be added the corollary : If two straight lines

be divided into any number of parts, the rectangle contained by the two
straight lines, is equal to the rectangles contained by the several parts of

one line and the several parts of the other respectively.

The method of reasoning on the properties of rectangles, by means of

the products which indicate the number of square units contained in their

areas,is foreign to Euclid's ideas of rectangles, as discussed in his Second
Book, which have no reference to any particular unit of length or measure
of surface.

Prop. t. The figures BH, BK, DL, EH are rectangles, as may
readily be shewn. For, by the parallels, the angle CEL is equal to EDK

;

and the angle EDK is equal to BDG (Euc. i. 29.). But BJDG is a right

angle. Hence one of the angles in each of the figures BH, BK, DL, EH
is a right angle, and therefore (Euc. i. 46, Cor.) these figures are

rectangular.

Prop. i. Algebraically, (fig. Prop, i.)

Let the line BC contain a linear units, and the line A, b linear units of

the same length.

Also suppose the parts BD, DE, EC to contain m, n, p linear units

respectively.

Then a = m + n + p,

multiply these equals by b,

therefore ab = bm + bn -f bp.

That is, the product of two numbers, one of which is divided into any
number of parts, is equal to the sum of the products of the undivided
number, and the several parts of the other

;

or, if the Geometrical interpretation of the products be restored,

The number of square units expressed by the product ab, is equal
to the number of square units expressed by the sum of the products bm,
bn, bp.

Prop. ii. Algebraically, (fig. Prop, n.)

Let AB contain a linear units, and AC, CB, m and n linear units

respectively.

Then m + n sb a,

multiply these equals by a,

therefore am + an — a2
.

That is, if a number be divided into any two parts, the sum of the
products of the whole and each of the parts is equal to the square of the
whole number

Prop. in. Algebraically, (fig. Prop, in.)

Let AB contain a linear units, and let BC contain m, and AC, n linear

units.

Then a = m +- n,

multiply these equals by m,
therefore ma = m* + mn.

That is, if a number be divided into any two parts, the product of

the whole number and one of the parts, is equal to the square of that

part, and the product of the two parts.



102 euclid's elements.

Prop. iv. might have been deduced from the two preceding propo-
sitions ; but Euclid has preferred the method of exhibiting, in the de-
monstrations of the second book, the equality of the spaces compared.

In the corollary to Prop. xlvi. Book I, it is stated that a parallelogram
which has one right angle, has all its angles right angles. By applying
this corollary, the demonstration of Prop. iv. may be considerably
shortened.

If the two parts of the line be equal, then the square on the whole
line is equal to four times the square on half the line.

Also, if a line be divided into any three parts, the square on the whole
line is equal to the squares on the three parts, and twice the rectangles
contained by every two parts.

Prop. iv. Algebraically, (fig. Prop, iv.)

Let the line AB contain a linear units, and the parts of it ^Cand BC,
m and n linear units respectively.

Then a — m + n,

gquaring these equals, .*. a2 — (m + n) 2
,

or a2 = mr + Imn + nr.

That is, if a number be divided into any two parts, the square of the
number is equal to the squares of the two parts together with twice the
product of the two parts.

From Euc. n. 4, may be deduced a proof of Euc. i. 47. In the fig.

take DL on DE, and EM on EB, each equal to BC, and join CH, HL,
LM, MC. Then the figure HLMC is a square, and the four triangles

CAH, HDL, LEM, MB C are equal to one another, and together are equal

to the two rectangles AG, GE.
Now AG, GE, FH, CK are together equal to the whole figure ADEB

;

and HLMC, with the four triangles CAH, HDL, LEB, MBC also make
up the whole figure ADEB

;

Hence AG, GE, FH, CK are equal to HLMC together with the four

triangles

but AG, GE are equal to the four triangles.

wherefore FH, CK are equal to HLMC,
that is, the squares on AC, AH are together equal to the square on CH.

Prop. v. It must be kept in mind, that the sum of two straight lines

in Geometry, means the straight line formed by joining the two lines

together, so that both may be in the same straight line.

The following simple properties respecting the equal and unequal
division of a line are worthy of being remembered.

I. Since AB = 2BC = 2 {BD + DC) = 2BD + 2DC. (fig. Prop, v.)

and AB = AD + DB ;

.\ 2CD + 2DB = AD+ DB,

and by subtracting 2DB from these equals,

.*. 2CD = AD - DB,
and CD = \ (AD - DB).

That is, if a line A B be divided into two equal parts in C, and into two
unequal parts in D, the part CD of the line between the points of section

is equal to half the difference of the unequal parts AD and DB,

II. Here A D = AC + CD, the sum of the unequal parts, (fig. Prop, v.)

and DB = AC - CD their difference.
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Hence by adding these equals together,

.'. AD + DB = 2AC,

or the sum and difference of two lines AC, CD, are together equal to

twice the greater line.

And the halves of these equals are equal,

.*. I.AD +%.DB= AC,

or, half the sum of two unequal lines AC, CD added to half their diffe-

rence is equal to the greater line AC.

III. Again, since AD = AC + CD, and DB = AC - CD,

by subtracting these equals,

.-. AD - DB = 2CD,

or, the difference between the sum and difference of two unequal lines u
equal to twice the less line.

And the halves of these equals are equal,

. . 2 AD - £ . DB = CD,

or, half the difference of two lines subtracted from half their sum is eqi;a

to the less of the two lines.

IV. Since AC - CD - DB the difference,

/. AC = CD + DB,
and adding CD the less to each of these equals,

'.'. AC + CD =2CD + DB,

or, the sum of two unequal lines is equal to twice the less line togetbo-

with the difference between the lines.

Prop. v. Algebraically.

Let AB contain 2a linear units,

its half BC will contain a linear units.

And let CD the line between the points of section contains linear units.

Then AD the greater of the two unequal parts, contains a+m linear units
;

and DB the less contains a — m units.

Also m is half the difference of a + m and a — m
;

.'. {a + m) (a — m) = cr — mr,

to each of these equals add m2
;

.'. (a + m) (a — m) + ra2 = a%
.

That is, if a number be divided into two equal parts, and also into two
unequal parts, the product of the unequal parts together with the square
of half their difference, is equal to the square of half the number.

Bearing in mind that AC, CD are respectively half the sum and half

the difference of the two lines AD, DB ; the corollary to this proposition
may be expressed in the following form : " The rectangle contained by
two straight lines is equal to the difference on the squares of half their

sum and half their difference."

The rectangle contained by AD and DB, and the square on BC are
each bounded by the same extent of line, but the spaces enclosed differ

by the square on CD.
A given straightline is said to heproduced when it has itslength increased

in either direction, and the increase it receives, is called the part produced.
If a point be taken in a line or in a line produced, the line is said to

be divided internally or externally, and the distances of the point from



104 etjclid's elements.

the ends of the line are called the internal or external segments of the
line, according as the point of section is in the line or the line produced.

Prop. vi. Algebraically.
Let AB contain 2a linear units, then its half BC contains a units ; end

let BD contain m units.

Then AD contains 2a + m units,

and .*. (2a + m) m = 2am + tnr
;

to each of these equals add a*,

.*. (2a + m) m + a2 = ar + 2am + m*.

But a8 + 2am + n2 = (a + ?n)~,

v . (2a + m) rn + a2 = (a + m)-.

That is, If a number be divided into two equal numbers, and another

number be added to the whole and to one of the parts ; the product oi

the whole number thus increased and the other number, together with the

square of half the given number, is equal to the square of the number
which is made up of half the given number increased.

The algebraical results of Prop. v. and Prop. vi. are identical, as it is

obvious that the difference of a + m and a — m in Prop. v. is equal to the

difference of 2a + m and m in Prop, vi, and one algebraical result ex-

presses the truth of both propositions.

This arises from the two ways in which the difference between two
unequal lines may be represented geometrically, when they are in the

same direction.

In the diagram (fig. to Prop, v.), the difference DB of the two unequal
lines AC and CD is exhibited by producing the less line CD, and making
CB equal to AC the greater.

Then the part produced DB is the difference between AC and CD,
for AC is equal to CB, and taking CD from each,

the difference of AC and CD is equal to the difference of CB and CD.
In the diagram (fig. to Prop, vi.), the difference DB of the two un-

equal lines CD and CA is exhibited by cutting off from CD the greater,

a part CB equal to CA the less.

Prop. vii. Either of the two parts AC, CB of the line AB may be

taken : and it is equally true, that the squares on AB and AC are equal

to twice the rectangle AB, AC, together with the square on BC.
Prop. vii. Algebraically.

Let AB contain a linear units, and let the parts AC and CB contain m
and n linear units respectively.

Then a = m + n ;

squaring these equals,

/. a2 = m2 + 2mn -\- n~,

add w* to each of these equals,

.*. a8 + r} = m2 + 2mn + 2ri'-,

But 2mn -f 2n* = 2 (m -f n) n = 2a?i,

.*. a8 + ft
8 = »i

8 + 2a?*.

That is, If a number be divided into any two parts, the squares of the

whole number and of one of the parts areequal to twice the product of the

whole number and that part, together with the square of the other part.

Prop. vui. As in Prop. vii. either part of the line may be taken,

and it is also true in this Proposition, that four times the rectangle con-
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tained by AB, AC together with, the square on BC, is equal to the square

on the straight line made up of AB and AC together.

The truth of this proposition may be deduced from Euc. n. 4 and 7.

For the square on AD (fig. Prop. 8.) is equal to the squares on AB,
BD, and twice the rectangle AB, BD; (Euc. n. 4.) or the squares on

AB, BC, and twice the rectangle AB, BC, because BC is equal to BD :

and the squares on AB, BCaxe equal to twice the rectangle AB, BC with

the square on AC'. (Euc. n. 7.) therefore the square on AD is equal to

four times the rectangle AB, BC together with the square on AC.
Prop. viii. Algebraically.

Let the whole line AB contain a linear units of which the parts AC,
CB contain m, n units respectively.

Then m + n = a,

and subtracting or taking n from each,

.*. m = a — n,

squaring these equals,

.'. m8 = a2 — 2an + n%
,

end adding ian to each of these equals,

.'. ian + m9 = a* + 2an + w8
.

But a8 + 2an + n* = (a + n) 2
,

,'. ian + m2 = (a + ?;)
2

.

That is, If a number be divided into any two parts, four times the pro-

duct of the whole number and one of the parts, together with the square

of the other part, is equal to the square of the number made of the whole
and the part first taken.

Prop. vin. may be put under the following form : The square on the

sum of two lines exceeds the square on their difference, by four times the

rectangle contained by the lines.

Prop. ix. The demonstration of this proposition may be deduced
from Euc. n. 4 and 7.

For (Euc. ii. 4.) the square on AD is equal to the squares on AC, CD
and twice the rectangle A C, CD; (fig. Prop. 9.) and adding the square
on DB to each, therefore the squares on AD, DB are equal to the squares
on AC, CD and twice the rectangle AC, CD together with the square on
DB ; or to the squares on BC, CD and twice the rectangle BC, CD with
the square on DB, because BC is equal to AC.

But the squares on BC, CD are equal to twice the rectangle BC, CD,
with the square on DB. (Euc. n. 7.)

Wherefore the squares on AD, DB are equal to twice the squares on
BC and CD.

Prop. ix. Algebraically.
Let AB contain 2a linear units, its halfAC or BC will contain a units

;

and let CD the line between the points of section contain m units.

Alsc AD the greater of the two unequal parts contains a + m units,

and DB the less contains a — m units.

Then (a + m) 2 = a2 + 2am + mr,

and (a — m) 2 = a'
1 — 2am + m8

.

\
Hence by adding these equals,

,\ (a -f m) 2 + (a - m)2=2a* + 2m*.

F5
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That is, If a number be divided into two equal parts, and also into two
unequal parts, the sum of the squares of the two unequal parts is equal
to twice the square of half the number itself, and twice the square of

half the difference of the unequal parts.

The proof of Prop. x. may be deduced from Euc. n. 4, 7, as Prop. rx.

Prop. x. Algebraically.

Let the line AB contain 2a linear units, of which its half AC ox CB
will contain a units

;

and let BD contain m units.

Then the whole line and the part produced will contain 2a + m units,

and half the line and the part produced will contain a -f m units,

.'. (2a + m) 2 = 4a2 + 4am + m2
,

add m% to each of these equals,

.* (2a + mY -f m% = 4a2 + 4am + 2m',

Again, (a + m)* = a2 + 2am + m~,

add a2 to each of these equals,

«\ (a + m) 2 + a2 = 2a2 + 2am + m*

and doubling these equals,

/. 2 (a + m) 2 + 2a2 = 4a2
-f 4 rem + 2m-

But (2a + mf + m2 = 4a2 + 4am + 2m3
.

Hence .-. (2a + m) 2 + m* = 2a2 + 2 (a + m) !
.

That is, If a number be divided into two equal parts, and the whole
number and one of the parts be increased by the addition of another num-
ber, the squares of the whole number thus increased, and of the number
by which it is increased, are equal to double the squares of half the num-
ber, and of half the number increased.

The algebraical results of Prop, ix, and Prop, x, are identical, (the

enunciations of the two Props, arising, as in Prop, v, and Prop, vi, from
the two ways of exhibiting the difference between two lines) ; and both
may be included under the following proposition : The square on the
sum of two lines and the square on their difference, are together equal to

double the sum of the squares on the two lines.

Prop. xi. Two series of lines, one series decreasing and the other

series increasing in magnitude, and each line divided in the same man-
ner may be found by means of this proposition.

(1) To find the decreasing series.

In the fig. Euc. n. 11, AB = AH + BIT,

and since AB .BII= AH2
, .'. (AH + BH) . BH = AH2

,

;. BH2 = All 2 - AH. BH = All . (AH - BH).

If now in HA, HL be taken equal to BH,

then HL2 = AH (AH - HL), or AH . AL = HL2
:

at is, AH is divided in L, so that the rectangle contained by the whole
.me AH and one part, is equal to the square on the other part HL. By a

similar process, HL may be so divided ; and so on, by always taking from

the greater part of the divided line, a part equal to the less.

(2) To find the increasing series.

From the fig. it is obvious that CF . FA = CA2
,

Hence CF is divided in A, in the same manner as AB is divided in H,
by adding A F a line equal to the greater segment, to the given line OA
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or AB. And by successively adding to the last line thus divided, its

greater segment, a series of lines increasing in magnitude may be found
similarly divided to AB.

It may also be shewn that the squares on the whole line and on the less

segment are equal to three times the square on the greater segment-
(Euc. xiii. 4.)

To solve Prop, xi, algebraically, or to find the point H in AB such
that the rectangle contained by the whole line AB and the part HB shall

be equal to the square on the other part AH.
Let AB contain a linear units, and AH one of the unknown parts coo

tarn x units,

then the other part HB contains a — x units.

And .'. a (a — x) = x~, by the problem,

or x% + ax = a8 , a quadratic equation.

Whence x = — x •

The former of these values of x determines th<? point H.

V5 — 1
So that x = -— . AB = AH, one part,

and a — x = a — AH — , AB = HB, the other part.
z

It may be observed, that the parts AH and HB cannot be numerically
expressed by any rational number. Approximation to their true values
in terms of AB, may be made to any required degree of accuracy, by ex-
tending the extraction of the square root of 5 to any number of decimals,

To ascertain the meaning of the other result x = -
. a,

M

In the equation a (a — x) = x2
,

for x write — x, then © (a + x) = x*,

which when translated into words gives the following problem.

To find the length to which a given line must be produced so that the

rectangle contained by the given line and the line made up of the given line

and the part produced, may be equal to the square on the part produced.
Or, the problem may also be expressed as follows :

To find two Mnes having a given difference, such that the rectangle con-

tained by the difference and one of them may be equal to the square on
the other.

It may here be remarked, that Prop. xi. Book n, affords a simple

Geometrical construction for a quadratic equation.

Prop. xii. Algebraically.

Assuming the truth of Euc. I. 47.

Let BC, CA, AB contain a, b, c linear units respectively,

and let CD, DA, contain m, n units,

then BD contains a + m units.

And therefore, c
2

*= {a 4- nif + n2
, from the right-angled triangle ABU,

also bz = m2 f nz from ACD ;

,\ c* — h5 = (a -\- m)a — m2
= a2 + 1am 4- m 2 — m2
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= g3 + 2am,

.'. c* = b- + a2
-r 2am,

that is, c~ is greater than 6* + a2 by 2am.

Prop. xiii. Case n. may be proved more simply as follows.

Since BD is divided into two parts in the point D,
therefore the squares on CB, BD are equal to twice the rectangle con-

tained by CB, BD and the square on CD ; (n. 7.)

add the square on AD to each of these equals
;

therefore the squares on CB, BD, DA are equal to twice the rectangU
CB, BD, and the squares on CD and DA,

but the squares on BD, DA are equal to the square on AB, (i. 47.)

and the squares on CD, DA are equal to the square on AC,
therefore the squares on CB, BA are equal to the square on AC and

twice the rectangle CB, BD. That is, &c.
Prop. xiii. Algebraically.
Let BC, CA, AB contain respectively a, b, c linear units, and let BD

and AD also contain m and n units.

Case i. Then DC contains a — m units.

Therefore c
2 = n2 + m3 from the right-angled triangle ABD,

and b
2 = n 2 + (a — m)2 from ADC;

.*. c2 — b
2 = m2 — (a — m) s

= m2 — a2 + 2am — m*

= — a2 + 2am,

,'. a 2 + c
2 = b

2 + 2am,

or 6
s + 2a)n — a 2 + c

8
,

that is, b'
2
is less than a* -f c2, by 2am,

Case ii. DC = m — a units,

/, cs = m2 + n2 from the right-angled triangle ABD,
and b

2 = (m — a) 2 + «2 from ^CD,
.'. c2 - 6 2 = m 2 - (m - a) 2

,

= m2 — m2 + 2am — a2

— 2am — a2
,

.". a2 + c
2 = b

2 + 2am,

or 6
2 + 2am = a2 + c

3
,

that is, 6* is less than, a2 + c
2 by 2am,

3ase in. Here m is equal to a.

And b2
-f a2 = c3 , from the right-angled triangle ABC.

Add to each of these equals a2
,

; V + 2a2 = c
2 + a2

,

that is, b2
is less than c* + a2 by 2a2

, or 2aa.

These two propositions, Euc. n. 12, 13, with Euc. i. 47, exhibit ibe

relations which subsist between the sides of an obtuse-angled, an acute-

angled, and right-angled triangle respectively.
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NOTE ON THE ABBREVIATIONS AND ALGEBRAICAL
SYMBOLS EMPLOYED IN GEOMETRY.

The ancient Geometry of the Greeks admitted no symbols besides the

diagrams and ordinary language. In later times, after symbols of opera-

tion had been devised by writers on Algebra, they were very soon adopted
and employed on account of their brevity and convenience, in writings

purely geometrical. Dr. Barrow was one of the first who introduced
algebraical symbols into the language of Elementary Geometry, and dis'

tinctly states in the preface to his Euclid, that his object is "to content

the desires of those who are delighted more with symbolical than verbal

demonstrations." As algebraical symbols are employed in almost al)

works on the mathematics, whether geometrical or not, it seems proper

in this place to give some brief account of the marks which may be re-

garded as the alphabet of symbolical language.
Themark = was first used by Robert Recorde, in his treatise on Algebra

entitled, " The Whetstone of Witte," 1557. He remarks ;
" And to avoide

the tediouse repetition of these woordes : is equalle to : I will sette as I

doe often in woorke use, a paire of paralleles, or Gemowe lines of one
lengthe, thus : = , bicause noe 2 thynges can be more equalle." It was
employed by him as simply affirming the equality of two numerical or

algebraical expressions. Geometrical equality is not exactly the same
as numerical equality, and when this symbol is used in geometrical reason-

ings, it must be understood as having reference to pure geometrical

equality.

The signs of relative magnitude, > meaning, is greater than, and <, is

less than, were first introduced into algebra by Thomas Harriot, in his
" Artis Analytic® Praxis," which was published after his death in 1631.

The signs + and — were firstemployed by Michael Stifel, in his "Arith-
metica Integra," which was published in 1544. The sign + was employed
by him for the word plus, and the sign — , for the word minus. These
signs were used by Stifel strictly as the arithmetical or algebraical signs

of addition and subtraction.

The sign of multiplication x was first introduced by Oughtred in his

"Clavis Mathematical' which was published in 1631. In algebraical

multiplication he either connects the letters which form the factors of a
product by the sign x , or writes them as words without any sign or mark
between them, as had been done before by Harriot, who first introduced
the small letters to designate known and unknown quantities. However
concise and convenient the notation AB x BC or AB.BC may be in
practice for " the rectangle contained by the lines AB and BC" ; the student
is cautioned against the use of it, in the early part of his geometrical
studies, as its use is likely to occasion a misapprehension of Euclid's
meaning, by confounding the idea of Geometrical equality with that oi

Arithmetical equality. Later writers on Geometry who employed the
Latin language, explained the notation AB x BC, by " AB ductum in

BC" ; that is, if the line AB be carried along the line BC in a normal
position to it, until it come to the end C, it will then form with BC, the
rectangle contained by AB and BC. Dr. Barrow sometimes expresses
" the rectangle contained by AB and BC" by " the rectangle ABC"

Michael Stifel was the first who introduced integral exponents to

denote the powers of algebraical symbols of quantity, for which he em-
ployed capital letters. Vieta afterwards used the vowels to denote known,
and the consonants, unknown quantities, but used words to designate the
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powers. Simon Stevin, in his treatise on Algebra, which, was published
in 1G05, improved the notation of Stifel, by placing the figures that in-

dicated the powers within small circles. Peter Ramus adopted the
initial letters I, q, c, bq oilatus, quadratics, cubus, biquadratics, as the nota-
tion of the first four powers. Harriot exhibited the different powers of

algebraical symbols by repeating the symbol, two, three, four, &c. times,
according to the order of the power. Descartes restored the numerical
exponents of powers, placing them at the right of the numbers, or symbols
of quantity, as at the present time. Dr. Barrow employed the notation
ABq, for " the square on the line AB," in his edition of Euclid. The
notations AB%

, ABZ
, for " the square and cube on the line whose extremities

are A and B," as well as AB x BC, for " the rectangle contained by AB
and BC," are used as abbreviations in almost all works on the Mathe-
matics, though not wholly consistent with, the algebraical notations a*

and a 3
.

The symbol V , being originally the initial letter of the word radix, was
first used by Stifel to denote the square root of the number, or of the

symbol, before which it is placed.

The Hindus, in their treatises on Algebra, indicated the ratio of two
v

numbers, or of two algebraical symbols, by placing one above the other,

without any line of separation. The line was first introduced by the Ara-
bians, from whom it passed to the Italians, and from them to the rest of

Europe. This notation has been employed for the expression of geome-
trical ratios by almost all writers on the Mathematics, on account cf its

great convenience. Oughtred first used points to indicate proportion ;

thus, a:b::c:d, means that a bears the same proportion to 6, as c does to d.

QUESTIONS ON BOOK II.

1. Is rectangle the same as recites anguhis? Explain the distinction,

and give the corresponding Greek terms.
2. What is meant by the swn of two, or more than two straight lines

in Geometry ?

3. Is there any difference between the straight lines by which a rect-

angle is said to be contained, and those by which it is bounded ?

4. Define a gnomon. How many gnomons appear from the same con^

struction in the same rectangle r Find the difference between them.
5.' What axiom is assumed in proving the first eight propositions of

the Second Book of Euclid ?

6. Of equal squares and equal rectangles, which must necessarily coin-

cide ?

7. How may a rectangle be dissected so as to form an equivalent

rectangle of any proposed length ?

8. When the adjacent sides of a rectangle are commensurable, the area

of the rectangle is properly represented hy the product of the number of

units in two adjacent sides of the rectangle. Illustrate this by considering

the case when the two adjacent sides contain 3 and 4 units respectively,

and distinguish between the units ofthe factors and the units ofthe product.

Shew generally that a rectangle whose adjacent sides arerepresentedby the

integers a and b, is represented by ab. Also skew, that in the same sense,

ah a b
the rectangle is represented by — , if the sides be represented by — »

- •
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9. Why may not Algebraical or Arithmetical proofs be substituted (as

being shorter) for the demonstrations of the Propositions in the Second
Book of Euclid ?

10. In what sense is the area of a triangle said to be equal to half the

product of its base and its altitude ? What two propositions of Euclid
may be adduced to prove it ?

11. How do you shew that the area of a rhombus is equal to half the
rectangle contained by the diagonals ?

12. How may a rule be deduced for finding a numerical expression
for the area of any parallelogram, when two adjacent sides are given?

13. The area of a trapezium which has two of its sides parallel is equal
to that of a rectangle contained by its altitude and half the sum of its

parallel sides. What propositions of the Eirst and Second Books of Euclid
are employed to prove this ? Of what service is the above in the men-
suration of fields with irregular borders?

14. From what propositions of Euclid may be deduced the following

rule for finding the area of any quadrilateral figure :
—" Multiply the sum

of the perpendiculars drawn from opposite angles of the figure upon the
diagonal joining the other two angles, and take half the product."

15. In Euclid, n. 3, where must be the point of division of the line, so

that the rectangle contained by the two parts may be a maximum ? Ex-
emplify in the case where the line is 12 inches long.

16. How may the demonstration of Euclid n. 4, be legitimately short-

ened ? Give the Algebraical proof, and state on what suppositions it can
be regarded as a proof.

17. Shew that the proof of Euc. it. 4, can be deduced from the two
previous propositions without any geometrical construction.

18. Shew that if the two complements be together equal to the two
squares, the given line is bisected.

19. If the line AB, as in Euc. n. 4, be divided into any three parts,

enunciate and prove the analogous proposition.

20. Prove geometrically that if a straight line be trisected, the square
on the whole line equals nine times the square on a third part of it.

21. Deduce from Euc. it. 4, a proof of Euc. i. 47.

22. If a straight line be divided into two parts, when is the rectangle
contained by the parts, the greatest possible? and when is the sum of the
squares of the parts, the least possible f

23. Shew that if a line be divided into two equal parts and into two
unequal parts ; the part of the line between the points of section is equal
to half the difference of the unequal parts.

24. If half the sum of two unequal lines be increased by half their

difference, the sum will be equal to the greater line : and if the sum of

two lines be diminished by half their difference, the remainder will be
equal to the less line.

25. Explain what is meant by the internal and external segments of a

line ; and show that the sum of the external segments of a line or the
difference of the internal segments is double the distance between the
points of section and bisection of the line.

26. Shew how Euc. n. 6, may be deduced immediately from the
preceding Proposition.

27. Prove Geometrieaily that the squares on the sum and difference

of two lines are equal to twice the squares on the lines themselves.
23. A given rectangle is divided by two straight lines into four rect-

angles. Given the areas of the two which have not common sides : find
the areas of the other two.
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29. In how many ways may the difference of two lines be exhibited?

Enunciate the propositions in Book n. which depend on that circumstance.
30. How may a series of lines be found similarly divided to the line

,4£inEuc. n. 11?
31. Divide Algebraically a given line (a) into two parts, such that

the rectangle contained by the whole and one part may be equal to the
square of the other part. Deduce Euclid's construction from one so-

lution, and explain the other.

32. Given the lesser segment of a line, divided as in Euc. n. 11,

%id the greater.

33. Enunciate the Arithmetical theorems expressed by the following

Algebraical formulae,

[a + b)
9 = a9 + 2ab + b* : a8 - 62 = (a + 6) (a - b) : (a-bf = a~ - lab + b\

and state the corresponding Geometrical propositions.

34. Shew that the first of the Algebraical propositions,

(a + x) (a - x) + x% = as
: (a + x) 2 + (a — x) 2 = 2a* + 2as

,

is equivalent to the two propositions v. and vi., and the second of them,
to the two propositions ix. and x. of the Second Book of Euclid.

35. Prove Euc. n. 12, when the perpendicular BE is drawn from
B on AC produced to E, and shew that the rectangle BC, CD is equal
to the rectangle A C, CE.

36. Include the first two cases of Euc. n. 13, in one proof.

37. In the second case of Euc. n. 13, draw a perpendicular CE from
the obtuse angle C upon the side AB, and prove that the square on AB
is equal to the rectangle AB, AE together with the rectangle BC, BD.

38. Enunciate Euc. n. 13, and give an Algebraical or Arithmetical
proof of it.

39. The sides of a triangle are as 3, 4, 5. Determine whether the
angles between 3, 4 ; 4, 5 ; and 3, 5 ; respectively are greater than, equal
to, or less than, a right angle.

40. Two sides of a triangle are 4 and 5 inches in length, if the
third side be 6^ inches, the triangle is acute-angled, but if it be 6,-6
inches, the triangle is obtuse-angled.

41. A triangle has its sides 7, 8, 9 units respectively; a strip of

breadth 2 units being taken off all round from the triangle, find the

area of the remainder.
42. If the original figure, Euc. n. 14, were a right-angled triangle,

whose sides were represented by 8 and 9, what number would represent
the side of a square of the same area ? Shew that the perimeter of the
square is less than the perimeter of the triangle.

43. If the sides of a rectangle are 8 feet and 2 feet, what is the sid?

of the equivalent square ?

44. "All plane rectilineal figures admit of quadrature." Point out
the succession of steps by which Euclid establishes the truth of this

proposition.

45. Explain the construction (without proof) for making a square
equal to a plane polygon.

46. Shew from Euc. ii. 14, that any algebraical surd as *Ja can be
represented by a line, if the unit be a line.

47. Could any of the propositions of the Second Book be made co-

rollaries to other propositions, with advantage ? Point out any such pro»
positions, and give youi reasons for the alterations you would make.
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PROPOSITION I. PROBLEM.

Divide a given straight line into ta>o parts such, that their rectangle may
he equal to a given square ; and determine the greatest square which the

rectangle can equal.

Let AB be the given straight line, and let M be the side of the
given square.

It is required to divide the line AB into two parts, so that the
rectangle contained by them may be equal to the square on M.

D E

A F C B

Bisect AB in C, with center C, and radius CA or CB, describe the

semicircle ADB.
At the point B draw BE at right angles to AB and equal to M.
Through E, draw ED parallel to AB and cutting the semicircle

inD;
and draw DF parallel to EB meeting AB in F.

Then AB is divided in F, so that the rectangle AF, FB is equal

to the square on M. (n. 14.)

The square will be the greatest, when ED touches the semicircle,

or when M is equal to half of the given line AB.

PROPOSITION II. THEOREM.

The square on the excess of one straight line above another is less than the

squares on the two lines by twice their rectangle.

Let AB, BChe the two straight lines, whose difference is AC.
Then the square on A C is less than the squares on AB and BC by

twice the rectangle contained by AB and BC,
A C B

D F E

Constructing as in Prop. 4. Book IL

Because the complement AG is equal to GE,
add to each CK,

therefore the whole ^Ji'is equal to the whole CE;
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and AX, CE together are double of AX;
but AX, CE are the gnomon AXF and CX,
and AX is the rectangle contained by AB, BO;

therefore the gnomon AXF and CX,
are equal to twice the rectangle AB, BC,

but AE, CX are equal to the squares on AB, BC;
taking the former equals from these equals,

therefore the difference of AE and the gnomon AXF is equal to

the difference between the squares on AB, BC, and twice the rectangle

AB, BC;
but the difference AE and the gnomon AXF is the figure HF,

which is equal to the square on AC
Wherefore the square on A C is equal to the difference between the

squares on AB, BC, and twice the rectangle AB, BC.

PROPOSITION III. THEOREM.

In any triangle the squares on the tico sides are together double of the

squares on half the base and on the straight line joining its bisection with the

opposite angle.

Let ABC he a triangle, and^4D the line drawn from the vertex A
to the bisection D of the base BC.

From A draw AE perpendicular to BC.
Then, in the obtuse-angled triangle ABE, (n. 12.)

;

the square on AB exceeds the squares on AE, EB, by twice the

rectangle BE, EE:
and in the acute-angled triangle AEC, (il. 13.)

:

the square on AC is less than the squares on AE, EC, by twice

the rectangle CE, EE:
wherefore, since the rectangle BE, EE is equal to the rectangle CD,

EE; it follows that the squares on AB, AC are double of the

squares on AE, EB.

PROPOSITION IV. THEOREM,

If straight lines be draicn from each angle of a triangle bisecting the

opposite sides, four times the sum of the squares on these lines is aqual to

three times the sum of the squares on the sides of the triangle.

Let ABC he any triangle, and let AE, BE, CF be drawn from

A, B, C, to E, E, F, the bisections of the opposite sides of the tri-

angle : draw AG perpendicular to BC.
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Then the square on AB is equal to the squares on BD, DA togethei

with twice the rectangle BB, DG, (il. 12.)

and the square on A C is equal to the squares on CD, DA dimi-

nished by twice the rectangle CD, DG; (n. 13.)

therefore the squares on AB, A C are equal to twice the square on
BD, and twice the square on AD ; for DC is equal to BD :

and twice the squares on AB, AC are equal to the square on BC,
and four times the square on AD : for BC is twice BD.

Similarly, twice ^he squares on AB, BC are equal to the square on
A C, and four times the square on BE

:

also twice the squares on BC, CA are equal to the square on AB,
and four times the square on FC:

hence, by adding these equals,

four times the squares on AB, AC, BC are equal to four times the

squares on AD, BB, CPtogether with the squares on AB,A C,BC:
and taking the squares on AB, AC, BC from these equals,

therefore three times the squares on AB, AC, BC are equal to four

times the squares on AD, BB, CF.

PROPOSITION V. THEOREM.

The sum of the perp>endiculars let fall from any point toithin an
teral triangle, will be equal to the perpendicular let fall from one of its

angles upon the opposite side. Is this proposition true when the point is in

one of the sides of the triangle ? I?i what manner must the proposition be

enunciated when the point is without the triangle f

Let ABC he an equilateral triangle, and P any point within it

:

and fromP let fall PD,PE, PPperpendiculars on the sides AB, BC,
VA respectively, also fromyl let fall A G perpendicular on the base BC.

Then AG is equal to the sum of PD, PE, PF.

From V draw PA, PB, PC to the angles A, B, C.

Then the triangle ABC is equal to the three triangles PAB, PBQ
PCA.
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But since every rectangle is double of a triangle of the same base

and altitude, (I. 41.)

therefore the rectangle AG, BC, is equal to the three rectangles

AB, BD; AC, BF and BC, BE.
Whence the line A G is equal to the sum of the lines BD, BE, BF.

If the point B fall on one side of the triangle, or coincide with E

:

then the triangle ABC is equal to the two triangles ABC, BBA :

whence AG Is equal to the sum of the two perpendiculars BD, BF.
If the point B fall without the base BC of the triangle :

then the triangle ABC is equal to the difference between the sum
of the two triangles ABC, BBA, and the triangle BCB.

Whence A G is equal to the difference between the sum of BD,
BF, and BE.

I.

6. If the straight line AB be divided into two unequal parts in

D, and into two unequal parts in E, the rectangle contained by AE,
EB, will be greater or less than the rectangle contained by AD, DB,
according as E is nearer to, or further from, the middle point of AB,
than D.

7. Produce a given straight line in such a manner that the square

on the whole line thus produced, shall be equal to twice the square on

the given line.

8. If AB be the line so divided in the points C and D, (fig. Euc.

II. 5.) shew that AB% = 4 . CD2 + ±.AD. DB.
9. Divide a straight line into two parts, such that the sum of their

squares may be the least possible.

10. Divide a line into two parts, such that the sum of their

squares shall be double the square on another line.

11. Shew that the difference between the squares on the two un-

equal parts (fig. Euc. II. 9.) is equal to twice the rectangle contained

by the whole line, and the part between the points of section.

12. Shew how in all the possible cases, a straight line may be
geometrically divided into two such parts, that the sum of their squares

shall be equal to a given square.

13. Divide a given straight line into two parts, such that the

squares on the whole line and on one of the parts shall be equal to twice

the square on the other part.

14. Any rectangle is the half of the rectangle contained by the

diameters of the squares on its two sides.

15. If a straight line be divided into two equal and into two un-
equal parts, the squares on the two unequal parts are equal to twice

the rectangle contained by the two unequal parts, together with four

times the square on the line between the points of section.

16. If the points C, D be equidistant from the extremities of the

straight line AB, shew that the squares constructed on AD and AC,
exceed twice the rectangle AC, ADhy the square constructed on CD.

17. If any point be taken in the plane of a parallelogram from
which perpendiculars are let fall on the diagonal, and on the sides

which include it, the rectangle of the diagonal and the perpendicular
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on it, is equal to the sum or difference of the rectangles of the sides

and the perpendiculars on them.

18. ABCD is a rectangular parallelogram, of which A, C are

opposite angles, E any point in BC, F any point in CD. Prove that

twice the area of the triangle AEF together with the rectangle BE,
DF is equal to the parallelogram A C.

II.

19. Shew how to produce a given line, so that the rectangle con-

tained by the whole line thus produced, and the produced part, shall be

equal to the square (1) on the given line (2) on the part produced.

20. If in the figure Euc. II. 11, we join J5.Fand CH, and produce

CH to meet BF in L, CL is perpendicular to BF.
21. If a line be divided, as in Euc. II. 11, the squares on the whole

line and one of the parts are together three times the square on the

other part.

22. If in the fig. Euc. II; 11, the points F, D be joined cutting

AHB, GHK'mf, d respectively ; then shall Ff=Dd.

III.

23. If from the three angles of a triangle, lines be drawn to the
points of bisection of the opposite sides, the squares on the distances
between the angles and the common intersection, are together one-third
of the squares on the sides of the triangle.

24. ABC is a triangle of which the angle at C is obtuse, and the
angle at B is half a right anple : D is the middle point ofAB, and CE
is drawn perpendicular to AB. Shew that the square on A C is double
of the squares on AD and DE.

25. If an angle of a triangle be two-thirds of two right angles,
shew that the square on the side subtending that angle is equal to the
squares on the sides containing it, together with the rectangle con-
tained by those sides.

26. The square described on a straight line drawn from one of
th«3 angles at the base of a triangle to the middle point of the opposite
side, is equal to the sum or difference of the square on half the side
bisected, and the rectangle contained between the base and that part of
it, or of it_ produced, which is intercepted between the same angle and
a perpendicular drawn from the vertex.

27. If the straight lines AD, BE, CF, drawn from the angles of

a triangle to D, E, F, the points of bisection of tne opposite sides in-

tersect in G; the squares on the sidesAB, BC, and CA, are together

equal to three times the squares on the lines AG, BG, and CG.
28. Produce one side of a scalene triangle, so that the rectangle

under it and the produced part may be equal to the difference of the

squares on the other two sides.

29. Given the base of any triangle, the area, and the line bisecting

the base, construct the triangle.
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IV.

30. Shew that the square on the hypotenuse of a right-angled
triangle, is equal to four times the area of the triangle together with
the square on the difference of the sides.

31. In the triangle ABC, if AD be the perpendicular let fall

upon the side BC; then the square on A C together with the rectangle

contained by BC, BD is equal to the square on AB together with
the rectangle CB, CD.

32. ABC is a triangle, right angled at C, and CD is the perpen-
dicular let fall from C upon AB ; if HK is equal to the sum of the

sides AC, CB, and LM to the sum of AB, CD, shew that the square
on HK together with the square on CD is equal to the square on LM,

33. ABC is a triangle having the angle at B a right angle : it is

required to find in AB a point P such that the square on A C may
exceed the squares on AP and PC by half the square on AB.

34. In a right-angled triangle, the square on that side which is the

greater of the two sides containing the right angle, is equal to the
rectangle by the sum and difference of the other sides.

35. The hypotenuse AB of a right-angled triangle ABC is tri-

sected in the points D, E; prove that if CD, CE be joined, the sum
of the squares on the sides of the triangle CDE is equal to two-thirds

of the square on AB.
36. From the hypotenuse of a right-angled triangle portions are

cut off equal to the adjacent sides : shew that the square on the middle
segment is equivalent to twice the rectangle under the extreme
segments.

V.

37. Prove that the square on any straight line drawn from the

vertex of an isosceles triangle to the base, is less than the square on a

side of the triangle by the rectangle contained by the segments of the

base : and conversely.

38. If from one of the equal angles of an isosceles triangle a per-

pendicular be drawn to the opposite side, the rectangle contained by
that side and the segment of it intercepted between the perpendicular

and base, is equal to the half of the square described upon the base.

39. If in an isosceles triangle a perpendicular be let fall from one
of the equal angles to the opposite side, the square on the perpendicu-

lar is equal to the square on the line intercepted between the other

equal angle and the perpendicular, together with twice the rectangle

contained by the segments of that side.

40. The square on the base of an isosceles triangle whose vertical

angle is a right angle, is equal to four times the area of the triangle.

41. Describe an isosceles obtuse-angled triangle, such that the

square on the side subtending the obtuse angle may be three times the

square on either of the sides containing the obtuse angle.

42. If AB, one of the sides of an isosceles triangle AB C be pro-

duced beyond the base to D, so that BD = AB, shew that

CD z = AB i + 2.BC\
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43. IfABC be an isosceles triangle, and DJE be drawn parallel

to the base BO, and EB be joined; prove that BE* = BC* JDE + CE %
.

44. IfABC be an isosceles triangle of which the angles at B and
C are each double ofA ; then the square on A C is equal to the square

on BC together with the rectangle contained by A C and BC.

VI. .

45. Shew that in a parallelogram the squares on the diagonals are

equal to the sum of the squares on all the sides.

46. IfABCD be any rectangle, A and C being opposite angles

and O any point either within or without the rectangle :

OA'+OC^OB^OD*.
47. In any quadrilateral figure, the sum of the squares on the

diagonals together with four times the square on the line joining their

middle points, is equal to the sum of the squares on all the sides.

48. In any trapezium, if the opposite sides be bisected, the sum
of the squares on the other two sides, together writh the squares on the

diagonals, is equal to the sum of the squares on the bisected sides,

together with four times the square on the line joining the points of

bisection.

49. The squares on the diagonals of a trapezkm are together

double the squares on the two lines joining the bisections of the

opposite sides.

50. In any trapezium two of whose sides are parallel, the squares

on the diagonals are together equal to the squares on its two sides which
are not parallel, and twice the rectangle contained by the sides which
are parallel.

51. If the two sides of a trapezium be parallel, shew that its

area is equal to that of a rectangle contained by its altitude and half

the sum of the parallel sides.

52. If a trapezium have two sides parallel, and the other two equal,

shew that the rectangle contained by the two parallel sides, together

with the square on one of the other sides, wrill be equal to the square
on the straight line joining two opposite angles of the trapezium.

53. If squares be described on the sides of any triangle and the

angular points of the squares be joined ; the sum of the squares on the

sides of the hexagonal figure thus formed is equal to four times the

sum of the squares on the sides of the triangle.

VII.

54. Find the side of a square equal to a given equilateral triangle.

55. Find a square which shall be equal to the sum of two given
rectilineal figures.

56. To divide a given straight line so that the rectangle under its

segments may be equal to a given rectangle.

57. Construct a rectangle equal to a given square and having the
difference of its sides equal to a given straight line.

58. Shew how to describe a rectangle equal to a given square, and
having one of its sides equal to a given straight line.
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DEFINITIONS..

I.

Equal circles are those of which the diameters are equal, or from
the centers of which the straight lines to the circumferences are

equal.

This is not a definition, but a theorem, the truth of which is evident; for,

if the circles be applied to one another, so that their centers coincide, the

circles must likewise coincide, since the straight lines from the centers are

equal.

II.

A straight line is said to touch a circle when it meets the circle,

and being produced does not cut it.

Circles are said to touch one another, which meet, but do not cut

one another.

IV.

Straight lines are said to be equally distant from the center of a

circle, when the perpendiculars drawn to them from the center are

equal.

And the straight line on which the greater perpendicular falls, is

said to be further from the center.

VI.

A segment of a circle is the figure contained by a straight line, and

the arc or the part of the circumference which it cuts off.
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VIL

The angle of a segment is that which is contained by a straight

line and a part of the circumference.

VIII.

An angle in e. segment is any angle contained by two straight lines

drawn from any point in the arc of the segment, to the extremities of

the straight line which is the base of the segment.

IX.

An angle is said to insist or stand upon the part of the circum-

ference intercepted between the straight lines that contain the angle.

A sector of a circle is ihe figure contained by two straight lines

drawn from the center and the arc between them.

Similar segments of circles are those Id which the angles are equal,

or which contain equal angle?
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PROPOSITION I. PROBLEM.

To find the center of a given circle.

Let ABC be the given circle : it is required to find its center.

c

Draw within it any straight line AB to meet the circumference in

A, B; and bisect AB m D; (i. 10.) from the point D draw DC at

fight angles to AB, (i. 11.) meeting the circumference in C, produce

CD to E to meet the circumference again in E, and bisect CE in F.
Then the point F shall be the center of the circle ABC.

For, if it be not, if possible, let G be the center, and join GA, GD. GB.
Then, because DA is equal to DB, (constr.)

and DG common to the two triangles ADG, BDG,
the two sides AD, DG, are equal to the two BD, DG, each to each;

and the base GA is equal to the base GB, (i. def. 15.)

because they are drawn from the center G :

therefore the angle ADG is equal to the angle GDB : (I. 8.)

but when a straight line standing upon another straight line makes
the adjacent angles equal to one another, each of the angles is a right

angle
;

(i. def. io.)

therefore the angle GDB is a right angle :

but FDB is likewise a right angle
;
(constr.)

wherefore the angle FDB is equal to the angle GDB, (ax. 1.)

the greater angle equal to the less, which is impossible
;

therefore G is not the center of the circle ABC.
In the same manner it can be shewn that no other point out of the

line CE is the center

;

and since CE is bisected in F,

any other point in CE divides CE into unequal parts, and cannot

be the center.

Therefore no point but _Fis the center of the circle ABC.
Which was to be found.

Cor. From this it is manifest, that if in a circle a straight line

bisects another at right angles, the center of the circle is in the line

"^hich bisects the other.

PROPOSITION II. THEOREM.

If any two points be taken in the circumference of a circi*-. ihe sCraichi

tine ichich joins them shall fall within the circle.

Let ABC he a circle, and A, B any two points in the circumference.

Then the straight line drawn from A to B shall fall within the circle.
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C

A E B

For ifAB do not fall within the circle,

let it fall, if possible, without the circle as AEB

;

find. D the center of the circle ABC, (ill. 1.) and join DA, DB
;

in the circumference AB take any point F,
join DF, and produce it to meet AB in E.

Then, because DA is equal to DB, (i. def. 15.)

therefore the angle DBA is equal to the angle DAB
;

(I. 5.)

and because AD, a side of the triangle DAD, is produced to B,
the exterior angle DEB is greater than the interior and opposite

angle DAE; (I. 16.)

but DAE was proved to be equal to the angle DBE
;

therefore the angle DEB is greater than the angle DBE

;

but to the greater angle the greater side is opposite, (i. 19.)

therefore DB is greater than DE

:

but DB is equal to DF; (i. def. 15.)

wherefore DF is greater than DE,
the less than the greater, which is impossible

;

therefore the straight line drawn from A to B does not fall without

the circle.

In the same manner, it may be demonstrated that it does not fall

upon the circumference

;

therefore it falls within it.

Wherefore, if any two points, &c. Q. E. D.

PROPOSITION III. THEOREM.
If a straight line drawn through the center of a circle bisect a straight

line in it xohich does not pass through the center, it shall cut it at right

angles : and conversely, if it cut it at right angles, it shall bisect it.

Let ABC be a circle ; and let CD, a straight line drawn through
the center, bisect any straight line AB, which does not pass through
the center, in the point F.

Then CD shall cut AB at right angles.

Take E the center of the circle, (ill. 1.) and join EA, EB,
Then, because AF is equal to FB, (hyp.)

and FE common to the two triangles AFE
7

BFE,

92
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there are two sides in the one equal to two sides in the other, eacn
to each

;

and the base EA is equal to the base EB; (i. def. 15.)

therefore the angle AFE is equal to the angle BFE
;

(i. 8.)

but when a straight line standing upon another straight line makes
the adjacent angles equal to one another,

each of them is a right angle; (i. def. 10.)

therefore each of the angles AFE, BFE, is a right angle :

wherefore the straight line CD, drawn through the center, bisecting

another AB that does not pass through the center, cuts the same at

right angles.

Conversely, let CD cut AB at right angles.

Then CD shall also bisect AB, that is, AF shall be equal to FB.
The same construction being made,

because, EB, EA, from the center are equal to one another,

(I. def. 15.)

therefore the angle EAFis equal to the angle EBF; (I. 5.)

and the right angle AFE is equal to the right angle BFE
;

(I. def. 10.)

therefore, in the two triangles, EAF, EBF,
there are two angles in the one equal to two angles in the other, each

to each

;

and the side EF, which is opposite to one of the equal angles in each,

is common to both

;

therefore the other sides are equal
;

(i. 26.)

therefore AF is equal to FB.
"Wherefore, if a straight line, &c. Q. E. D.

PROPOSITION IV. THEOREM.

If in a circle tivo straight lines cut one another, ichich do not both pass

through the center, they do not bisect each other.

Let ABCD be a circle, and AC, BD two straight lines in it which
cut one another in the point E, and do not both pass through the center.

Then AC, BD, shall not bisect one another.

For, if it be possible, let AE be equal to EC, and BE to ED.
If one of the lines pass through the center,

it is plain that it cannot be bisected by the other which does not
pass through the center

:

but if neither of them pass through the center,

find i^the center of the circle, (ill. 1.) and join EF.
Then because FE, a straight line drawn through the center, bisects

another A C which does not pass through the center, (hyp.)

therefore FE cuts AC at right angles : (ill.
3,J

therefore FEA is a right angle.
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Again, "because the straight line FE bisects the straight line JBD,

which does not pass through the center, (hyp.)

therefore FE cuts ED at right angles : (ill. 3.)

wherefore FEB is a right angle

:

but FEA was shewn to be a right angle
;

therefore the angle FEA is equal to the angle FEB, (ax. 1.)

the less equal to the greater, which is impossible :

therefore A C, BE do not bisect one another.

Wherefore, if in a circle,. &c. q.e.d.

PROPOSITION V. THEOREM.

If i'J30 circles cut one another
y
they shall not have the same center.

Let the t770 circles ABC, CDO, cut one another in the points B, C
They shall not have the same center.

If possible, let E be the center of the two circles
;
join EC,

and draw any straight lineEFG meeting the circumferences in jPand Q.
And because E is the center of the circle ABC,

therefore is^F is equal to EC; (i. def. 15.)

again, because E is the center of the circle CDG,
therefore EG is equal to EC: (I. def. 15.)

but EFwas shewn to be equal to EC;
therefore EF is equal to EG, (ax. 1.)

the less line equal to the greater, which is impossible.

Therefore E is not the center of the circles ABC, CDG.
Wherefore, if two circles, &c. Q.E.D.

PROPOSITION VI. THEOREM.

If one circle touch another internally, they shall not have the same center,

Let the circle CDE touch the circle ABC internally in the point C.

They shall not have the same center.

c

If possible, let Fbe the center of the two circles : join EC,
and draw any straight lineFEB, meeting the circumferences inE and B.

And because jFis the center of the circle ABC,
FB is equal to FC; (l. def. 15.)
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also, because _Fis the center of the circle CDE,
FE is equal to FC: (i. def. 15.)

but FB was shewn to be equal to FC)
therefore .Fi? is equal to FB, (ax. 1.)

the less line equal to the greater, which is impossible

:

therefore jPis not the center of the circles ABC, CDS.
Therefore, if two circles, &c. Q.E.D.

PROPOSITION VII. THEOREM.

If any point be taken in the diameter of a circle which is not the center,,

of all the straight lines which can be drawn from it to the circumference^

the greatest is that in xohich the center is, and the other part of that

iiameter is the least; and, of the rest, that which is nearer to the

\i?ie which passes through the center is always greater than one more remote:

mdfrom the same point there can be drawn only tioo equal straight lines

lo the circumference one upon each side of the diameter

Let ABCD be a circle, and AD its diameter, in which let any point

F be taken which is not the center

:

let the center be E.
Then, of all the straight lines FB, FC, FG &c. that can be drawn

from F to the circumference,

FA, that in which the center is, shall be the greatest,

and FD, the other part of the diameter AD, shall be the least

:

and of the rest, FB, the nearer to FA, shall be greater than FC
the more remote, and FC greater than FG.

Join BE, CE, GE.
Because two sides of a triangle are greater than the third side, (i. 20.)

therefore BE, EF are greater than BF:
but AE is equal to BE; (i. def. 15.)

therefore AE, EF, that is, AF is greater than BF.
Again, because BE is equal to CE,

and FE common to the triangles BEF, CEF,
the two sides BE, EF are equal to the two CE, EF, each to each

;

but the angle BEF is greater than the angle CEF; (ax. 9.)

therefore the base BF is greater than the base CF. (i. 24.)

For the same reason CFis greater than GF.
Again, because GF, FE are greater than EG, (I. 20.)

and EG is equal to ED

;

therefore GF, FE are greater than ED

:

take away the common part FE,
and the remainder GF is greater than the remainder FD. (a*. 6'.)
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Therefore, FA is the greatest,

r.ndFD the least of all the straight lines from F to the circumference

;

and BFis greater than CF, and CFthan GF.
Also, there can be drawn only two equal straight lines from the

point jPto the circumference, one upon each side of the diameter.

At the point F, in the straight line FF, make the angle FEU
equal to the angle FEG, (i. 23.) and join FH.

Then, because GF is equal to EH, (i. def. 15.)

and EF common to the twor

triangles GEF, KEF;
the two sides GE, EF are equal to the two HE, EF, each to each

;

and the angle GEF is equal to the angle HEF; (constr.)

therefore the base FG is equal to the base FH: (i. 4.)

but, besides FH, no other straight line can be drawn from F to the

circumference equal to FG :

for, if possible, let it be FK\
and because FK is equal to FG, and FG to FH,

therefore FK is equal to FH; (ax. 1.)

that is, a line nearer to that which passes through the center, is equs.1

to one which is more remote
;

which has been proved to be impossible.

Therefore, if any point be taken, &c. Q. e. d.

PROPOSITION VIII. THEOREM.

If any point be taken without a circle, and straight lines be drawn from
it to the circumference, whereof one passes through the center; of those

which fall upon the concave part of the circumference, the greatest is that

which passes through the center; and of the rest, that which is nearer to the

one passing through the center is always greater than one more remote : but

of those which fall upon the convex part of the circumference, the least is

that between the point without the circle and the diameter ; and of the rest,

that which is nearer to the least is always less than one more remote ; and
only two equal straight lines can be drawn from the same point to the circum-

ference, one upon each side of the line which passes through the center.

Let ABC he a circle, and D any point without it, from which let

the straight lines DA, BE, JDF, EC he drawn to the circumference,

whereof DA passes through the center.

D

E A
Of those which fall upon the concave part of the circumference

AEFC, the greatest shall be DA, which passes through the center;
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and any line nearer to it shall be greater than one more remote,

viz. DE shall be greater than DF, and DF greater than DC;
but of those which fall upon the convex part ofthe circumference IlLKG

y

the least shall be DG between the point D and the diameter AG
;

and any line nearer to it shall be less than one more remote,

viz. DK less than DL, and DL less than DH.
Take M the center of the circle ABC, (ill. 1.)

and join 3£F, MF, MC, 3IK, ML, MH.
And because AM is equal to ME,
add MB to each of these equals,

therefore AD is equal to EM, MD : (ax. 2.)

but EM, MD are greater than ED
;

(I. 20.)

therefore also AD is greater than ED.
Again, because ME is equal to MF, and MD common to the tir-

angles EMD, FMD ; EM, MD, are equal to FM, MD, each to each,

but the angle EMD is greater than the angle FMD
;

(ax. 9.)

therefore the base ED is greater than the base FD. (i. 24.)

In like manner it may be shewn that FD is greater than CD.
Therefore DA is the greatest

;

and DE greater than DF, and DF greater than DC.
And, because MK, KD are greater than MD, (i. 20.)

and MX is equal to MG, (i. def. 15.)

the remainder KD is greater than the remainder GD, (ax. 5.)

that is, GD is less than KD

:

and because MLD is a triangle, and from the points M, D, the

extremities of its side MD, the straight lines MK, DK are drawn to

the point K within the triangle,

therefore MK, KD are less than ML, LD: (i. 21.)

but MK is equal to ML
;

(i. def. 15.)

therefore, the remainder DIC is less than the remainder DL. (ax. 5.)

In like manner it may be shewn, that DL is less than DH.
Therefore, DG is the least, and DK less than DL, and DL less

than DH.
Also, there can be drawn only two equal straight lines from the

point D to the circumference, one upon each side of the line which
passes through the center.

At the point 31, in the straight line MD,
make the angle D3IB equal to the angle D3IK, (1. 23.) and join DB.

And because MK is equal to MB, and 31D common to the tri-

angles K31D, B3ID,
the two sides KM, 31D are equal to the two BM, 3ID, each to each

;

and the angle K3ID is equal to the angle BMD
;
(constr.)

therefore the base .DiT is equal to the base DB : (i. 4.)

but, besides DB, no straight line equal to DK can be drawn from D
to the circumference,

for, if possible, let it be DN;
and because DK is equal to DN, and also to DB,

therefore DB is equal to DN;
that is, a line nearer to the least is equal to one more remote,

which has been proved to be impossible.

If therefore, any point, &c. Q. E. d.
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PROPOSITION ix. theorem:.

If a point he taken within a circle, from which there fall more than

two equal straight lines to the circumference, that point is the center of the

circle.

Let the pointDbe taken within the circleAB C, from which to the circum-
ference there fall more than two equal straight lines, viz. DA, DB, DC.

Then the point D shall be the center of the circle.

Z5T
For, if not, let E, if possible, be the center

:

join DE, and produce it to meet the circumference in F, G;
then FG is a diameter of the circle ABC: (i. def. 17.)

and because in FG, the diameter of the circle ABC, there is taken

the point D, which is not the center,

therefore DG is the greatest line drawn from it to the circumference,

and DC is greater than DB, and DB greater than DA : (ill. 7.)

but these lines are likewise equal, (hyp.) which is impossible:

therefore E is not the center of the circle ABC.
In like manner it may be demonstrated,

that no other point but D is the center

;

D therefore is the center.

Wherefore, if a point be taken, &c. Q. e.d.

PROPOSITION X. THEOREM.

One circumference of a circle cannot cut another in more than two points.

If it be possible let, the circumference ABC cut the circumference
DEF in more than two points, viz. in B, G, F.

Take the center K of the circle ABC, (in. 1.) and join KB, KG, KF.
Then because K is the center of the circle ABC,

therefore KB, KG, KF are all equal to each other: (i. def. 15.)

and because within the circle DEF there is taken the point K, from
which to the circumference DEF fall more than two equal straight

lines KB, KG, KF;
therefore the point Kh the center of the circle DEF: (ill. 9.}

but -STis also the center of the circle ABC; (constr.)

G 5
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therefore the same point is the center of two circles that cut one
another, which is impossible, (ill. 5.)

Therefore, one circumference of a circle cannot cut another in more
tian two points, q.e.d.

PROPOSITION XI. THEOREM.

If or*e circle touch another internally in any point, the straight line,

which joins their centers being produced, shall pass through that point of
contact.

Let the circle ABE touch the circle ABC internally in the point A

;

and let .Fbe the center of the circle ABC, and G the center of the

circle ABE;
then the straight line which joins the centers F, G, being produced,

shall pass through the point A.

For, if FG produced do not pass through the point A,
let it fall otherwise, if possible, as FGDH, and join AF, AG.
Then, because two sides of a triangle are together greater than the

third side, (i. 20.)

therefore FG, GA are greater than FA :

but FA is equal to FH; (I. def. 15.)

therefore FG, GA are greater than FII:
take away from these unequals the common part FG

;

therefore the remainder AG is greater than the remainder Gil; (ax. 5.)

but AG is equal to GD; (I. def. 15.)

therefore GD is greater than GH,
the less than the greater, which is impossible.

Therefore the straight line which joins the points F, G, being produced,
cannot fall otherwise than upon the point A,

that is, it must pass through it.

Therefore, if one circle, &c. Q. E. D.

PROPOSITION XII. THEOREM.

If two circles touch each other externally in any point, the straight line

whichjoins their centers, shall pass through that point of contact.

Let the two circles ABC, ABE, touch each other externally in the

point A
;

and let JFbe the center of the circleA BC, and G the center ofABE.
Then the straight line which joins the points F, G. shall pass through

the point of contact A.
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If not, let it pass otherwise, if possible, as FCDG, and join FA, AG
And because .Fis the center of the circle ABC,

FA is equal to FC :

also, because G is the center of the circle ADF,
GA is equal to GD:

therefore FA, AG are equal to FC, DG; (ax. 2.)

wherefore the whole FG is greater than FA, AG:
but FG is less than FA, AG; (I. 20.) which is impossible:

therefore the straight line which joins the points F, G, cannot pass

otherwise than through A the point of contact,

that is, FG must pass through the point A.
Therefore, if two circles, &c. q.e.d.

PROPOSITION XIII. THEOREM.
One circle cannot touch another in more points than in one, whether it

touches it on the inside or outside.

For, if it be possible, let the circle EBF touch the circle ABC in

more points than in one.

and first on the inside, in the points B, D.

Join BD, and draw Gil bisecting BD at right angles. (I. 11.)

Because the points B, D are in the circumferences of each of the circles,

therefore the straight line BD falls within each of them
;
(in. 2.)

therefore their centers are in the straight line 6riZwh.ich bisects BD
at right angles

;
(ill. 1. Cor.)

therefore GH passes through the point of contact: (ill. 11.)

but it does not pass through it,

because the points B, D are without the straight line GH;
which is absurd

:

therefore one circle cannot touch another on the inside in more points

than in one.

Nor can two circles touch one another on the outside in more tha:>

in one point.

For, if it be possible,

let the circle ACK touch the circle ABC'm the points A, C;
join AC.
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Because the two points A, Care in the circumference of the circle

ACK,
therefore the straight line A C which joins them, falls within the circle

ACK: (ilL 2.)

hut the circle ACK is without the circle ABC; (hyp.)

therefore the straight line A C is without this last circle :

but, because the points A, C are in the circumference of the circle ABC,
the straight line A C must be within the same circle, (ill. 2.)

which is absurd

;

therefore one circle cannot touch another on the outside in more than
in one point

:

and it has been shewn, that they cannot touch on the inside in more
points than in one.

Therefore, one circle, &e. Q.E.D.

PROPOSITION XIV. THEOREM.

Equal straight lines in a circle are equally distant from the center

;

and conversely, those which are equally distant from the center
t
are equal

to one another.

Let the straight lines AB, CD, in the circle ABDC, be equal to

one another.

Then AB and CD shall be equally distant from the center,

c

AX

/*E

B

Take E the center of the circle ABDC, (ill. 1.)

from E draw EF, EG perpendiculars to AB, CD, (i. 12.) and join

EA, EC.
Then, because the straight line EF passing through the center,

cuts AB, which does not pass through the center, at right angles

;

EF bisects AB in the point F: (ill. 3.)

therefore AF is equal to FB, and AB double of AF.
For the same reason CD is double of CG :

but AB is equal to CD : (hyp.)

therefore AF is equal to CG. (ax. 7.)

And because AE is equal to EC, (i. def. 15.)

the square on AE is equal to the square on EC:
but the squares on AF, FEare equal to the square on AE, (I. 47.)

because the angle AFE is a right angle ;



book in. PRor. xv. 133

and for the same reason, the squares on 'EG, GC are equal to the

square on EC;
therefore the squares on AF, FE are equal to the squares on CG,

GE: (ax. 1.)

but the square on AF is equal to the square on CG,
because AF is equal to CG

;

therefore the remaining square on EF is equal to the remaining
square on EG, (ax. 3.)

and the straight line EF is therefore equal to EG

:

but straight lines in a circle are said to be equally distant from the

center, when the perpendiculars drawn to them from the center are

equal : (ill. def. 4.)

therefore AB, CD are equally distant from the center.

Conversely, let the straight lines AB, CD be equally distant from
the center, (ill. def. 4.)

that is, let FE be equal to EG ;

then AB shall be equal to CD.
For the same construction being made,

it may, as before, be demonstrated,

that AB is double of AF, and CD double of CG,
and that the squares on FE, AF are equal to the squares on EG, GC:

but the square on FE is equal to the square on EG,
because FE is equal to EG; (hyp.)

therefore the remaining square on^jPis equal to the remaining square

on CG : (ax. 3.)

and the straight line AF is therefore equal to CG:
but AB was shewn to be double of AF, and CD double of CG

;

wherefore AB is equal to CD. (ax. 6.)

Therefore equal straight lines, &c. Q. E. D.

PROPOSITION XV. THEOREM.
The diameter is the greatest straight line in a circle ; and of the rest,

that which is nearer to the center is always greater than one more remote

:

and conversely the greater is nearer to the center than the less.

Let ABCDhe a circle, of which the diameter is AD, and the center E;
and let BCbe nearer to the center than FG.

Then AD shall be greater than any straight line BC, which is not a

diameter, and BC shall be greater than FG.
A B

From E draw EH, perpendicular to BC, and EK to FG, (I. 12.)

and join EB, EC, EF.
A.nd because AE is equal to EB, and ED to EC, (I, def. 15.)

therefore AD is equal to EB, EC: (ax. 2.)

but EB, EC are greater than BC; (i. 20.)

wherefore also AD is greater than BC
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And, because BC is nearer to the center than FG, (hyp.)

therefore EH is less than EX: (ill. def. 5.)

but, as was demonstrated in the preceding proposition,

BC is double of BH, and FG double of FK,
and the squares on EH. HB are equal to the squares on EX, KF\

but the square on EH is less than the square on EK,
because EH is less than EX

;

therefore the square on BH is greater than the square on FX,
and the straight line BH greater than FX,

and therefore BC is greater than FG.
Next, let BChe greater than FG

;

then BC shall be nearer to the center than FG, that is, the same con-

struction being made, EH shall be less than EX. (ill. def. 5.)

Because i?C is greater than FG,
BH likewise is greater than XF:

and the squares on BH, HE are equal to the squares on FX, XE,
of which the square on BH is greater than the square on FX,

because BH is greater than FX:
therefore the square on EH is less than the square on EX,

and the straight line EH less than EX:
and therefore BC is nearer to the center than FG. (ill. def. §.)

Wherefore the diameter, &c. Q.E.D.

PROPOSITION XVI. THEOREM.
The straight line draicn at right angles to the diameter of a circle, from

the extremity of it, falls without the circle ; and no straight line can be drawn

from the extremity between that straight line and the circumference, so as not

to cut the circle : or, which is the same thing, no straight line can make so

great an acute angle with the diameter at its extremity, or so small an angle

with the straight line xchich is at right angles to it, as not to cut the circle.

Let ABC he a circle, the center of which is D, and the diameter AB.
Then the straight line drawn at right angles to AB from its ex-

tremity A, shall fall without the circle.

For, if it does not, let it fall, if possible, within the circle, as AC;
and draw DC to the point C, where it meets the circumference.

And because DA is equal to DC, (i. def. 15.)

the angle DA C is equal to the angle A CD : (i. 5.)

but DA C is a right angle
;
(hyp.)

therefore ACD is a right angle
;

and therefore the angles DA C, A CD are equal to two right angles
;

which is impossible: (i. 17.)

therefore the straight line drawn from A at right angles to BA, does
not fall within the circle.



BOOK III. PROP. XVII. 135

In the same manner it may be demonstrated,
that it does net fall upon the circumference

;

therefore it must fail without the circle, as AF.
Also, between the straight line .42?and the circumference, no straight

line can be drawn from the point A which does not cut the circle.

For, if possible, let AF fall between them,

PE

and from the point D, let DG be drawn perpendicular to AF, (1. 12.)

and let it meet the circumference in H.
And because AGD is a right angle,

and DAG less than a right angle, (I. 17.)

therefore DA is greater than D G: (1. 19.)

but DA is equal to DH\ (1. def. 15.)

therefore DH is greater than D G,

the less than the greater, which is impossible :

therefore no straight line can be drawn from the point A, between
AF and the circumference, which does not cut the circle :

or, which amounts to the same thing, however great an acute angle

a straight line makes with the diameter at the point A, or however
small an angle it makes with AF, the circumference must pass be-

tween that straight line and the perpendicular AF. q.e.d.

Cor. From this it is manifest, that the straight line which is

drawn at right angles to the diameter of a circle from the extremity

of it touches the circle
;

(ill. def. 2.) and that it touches it only in one
point, because, if it did meet the circle in two, it would fall within it.

(ill. 2.) " Also, it is evident, that there can be but one straight line

which touches the circle in the same point."

PROPOSITION XVII. PROBLEM.
To draw a straight line from, a given point, either toithout or in, the cir-

Cumference, lohich shall touch a given circle.

First, let A be a given point without the given circle BCD

;

it is required to draw a straight line from A which shall touch the circle.

Find the center £ of the circle, (III. 1.) and join AF;
and from the center F, at the distance FA. describe the circle AFG ;

from the point D draw DF at right angles to FA, (1. 11.) me°* ;ng
the circumference of the circle AFG in F\

and join FBF, AB.
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Then AB shall touch the circle BCD in the point B.
Because E is the center of the circles BCD, AFG, (i. def. 15.)

therefore EA is equal to EF, and JED to EB

;

therefore the two sides AE, EB, are equal to the two FE, ED,
each to each

:

and they contain the angle at E common to the two triangles AEB,
FED;
therefore the base DF is equal to the base AB, (i. 4.)

and the triangle FED to the triangle AEB.
and the other angles to the other angles

:

therefore the angle EBA is equal to the angle EDF:
but EDF is a right angle, (constr.)

wherefore EBA is a right angle : (ax. 1.)

and EB is drawn from the center

:

but a straight line drawn from the extremity of a diameter, at right

angles to it, touches the circle : (ill. 16. Cor.)

therefore AB touches the circle
;

and it is drawn from the given point A.
Secondly, if the given point be in the circumference of the circle,

as the point D,
draw DE to the center E, and DF at right angles to DE:

then DF touches the circle, (ill. 16. Cor.) q.e.f.

PROPOSITION XVIII. THEOREM.

If a straight line touch a circle, the straight line drawn from the center to

the point of contact, shall he perpendicular to the line touching the circle.

Let the straight line DE touch the circle ABC in the point C;
take the center F, and draw the straight line FC. (in. 1.)

Then FC shall be perpendicular to DE.

If FCbe not perpendicular to DE; from the point F, if possible,

let FBG be drawn perpendicular to DE.
And because FGC is a right angle,

therefore GCF is an acute angle; (i. 17.)

and to the greater angle the greater side is opposite: (I. 19.)

therefore FC is greater than FG

:

but FC is equal to FB
; (1. def. 15.)

therefore FB is greater than FG,
the less than the greater, which is impossible

:

therefore FG is not perpendicular to DE.
In the same manner it may be shewn,

that no other line is perpendicular to DE besides FC,
that is, FC is perpendicular to DE.

Therefore, if a straight line, &c, q.e.d.
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PROPOSITION XIX. THEOREM.
If a straight line touch a circle, and from the point of contact a straight

line be drawn at right angles to the touching line, the center of the circle shall

be in that line.

Let the straight line DE touch the circle ABC in C,

and from C let CA be drawn at right angles to DE.
Then the center of the circle shall be in CA.

For, if not, let J^be the center, if possible, and join CF.
Because DE touches the circle ABC,

and FC is drawn from the center to the point of contact,

therefore FCh perpendicular to DE; (ill. 18.)

therefore FCE is a right angle :

but A CE is also a right angle
;
(hyp.)

therefore the angle FCE is equal to the angle A CE, (ax. 1.)

the less to the greater, which is impossible :

therefore F is not the center of the circle AB C.

In the same manner it may be shewn,
that no other point which is not in CA, is the center;

that is, the center of the circle is in CA.
Therefore, if a straight line, &c. Q. E. D.

PROPOSITION XX. THEOREM.

The angle at the center of a circle is double of the angle at the circumfer-
ence upon the same base, that is, upon the same part of the circumfere?ice.

Let ABChe a circle, and BEC an angle at the center, and BAC
an angle at the circumference, which have BC the same part of the

circumference for their base.

Then the angle BEC shall be double of the angle BA C.

A

Join AE, and produce it to F.
First, let the center of the circle be within the angle BAC.

Because EA is equal to EB,
therefore the angle EBA is equal to the angle EAB

;
(i. 5.)

therefore the angles EAB, EBA are double of the angle EAB ;

but the angle BEFis equal to the angles EAB, EBA
;

(i. 32.)
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therefore also the angle BEFh double of the angle EAB:
for the same reason, the angle EEC is double of the angle EAC:

therefore the whole angle EEC is double of the whole angle BA C.

Secondly, let the center of the circle be without the angle BA C.

It may be demonstrated, as in the first case,

that the angle EEC is double of the angle FAC,
and that FEB, a part of the first, is double of FAB, a part of the other

;

therefore the remaining angle BEC is double of the remaining

angle BAC.
Therefore the angle at the center, &c. q.e.d.

PROPOSITION XXI. THEOREM.
The angles in the same segment of a circle are equal to one another.

Let ABCD be a circle,

and BAD, BED angles in the same segment BAED.
Then the angles BAD, BED shall be equal to one another.

First, let the segment BAED be greater than a semicircle.

A e

c

Take F, the center of the circle ABCD, (ill. 1.) and join BF, FD.
Because the angle BFD is at the center, and the angle BAD nt

the circumference, and that they have the same part of the circum-
ference, viz. the arc BCD for their base

;

therefore the angle BFD is double of the angle BAD : (in. 20.)

for the same reason the angle BFD is double of the angle BED :

therefore the angle BAD is equal to the angle BED. (ax. 7.)

Next, let the segment BAED be not greater than a semicircle.

A E

c

Draw AF to the center, and produce it to C, and join CE.
Because A C is a diameter of the circle,

therefore the segment BADC is greater than a semicircle
;

and the angles in it BA C, BEC are equal, by the first case

:
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for the same reason, because CBED is greater than a semicircle,

the angles CAD, CED, are equal

:

therefore the whole angleBAD is equal to the whole angle BED. (ax. 2.)

Wherefore the angles in the same segment, &c. Q. E. D.

PROPOSITION XXII. THEOREM.

The opposite angles of any quadrilateral figure inscribed in a circle, are

together equal to two right angles.

Let ABCD be a quadrilateral figure in the circle ABCD.
Then any two of its opposite angles shall together be equal to two

right angles.
D

C

Join A C, BD.
And because the three angles of every triangle are equal to two

right angles, (I. 32.)

the three angles of the triangle CAB, viz. the angles CAB, ABC,
BCA, are equal to two right angles :

but the angle CAB is equal to the angle CDB, (ill. 21.)

because they are in the same segment CDAB\
and the angle A CB is equal to the angle ADB,
because they are in the same segment ADCB:

therefore the two angles CAB, ACB are together equal to the whole
angle ADC: (ax. 2.)

to each of these equals add the angle ABC-,
therefore the three angles ABC, CAB, BCA are equal to the two

angles ABC, ADC: (ax. 2.)

but ABC, CAB, BCA, are equal to two right angles;
therefore also the angles ABC, ADC are equal to two right angles.

In the same manner, the angles BAD, DCB, may be shewn to be
equal to two right angles.

Therefore, the opposite angles, &c. Q,E.D.

PROPOSITION XXIII. THEOREM.
Upon the same straight line, and upon the same side of it, there cannot

be tivo similar segynents of circles, not coinciding with one another.

If it be possible, upon the same straight line AB, and upon the
same side of it, let there be two similar segments of circles, ACB,
ADB, not coinciding with one another.
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Then, because the circumference A CB cuts the circumferenceADB
in the two points A, B, they cannot cut one another in any
other point: (ill. 10.)

therefore one of the segments must fall within the other :

let A CB fall within ABB :

draw the straight line BCD, and join CA, DA.
Because the segment ACB is similar to the segment ADB, (hyp.)

and that similar segments of circles contain equal angles
;
(ill. def. 11.)

therefore the angle A CB is equal to the angle ADB,
the exterior angle to the interior, which is impossible, (i. 16.)

Therefore, there cannot be two similar segments of circles upon the

same side of the same line, which do not coincide, q.e.d.

PROPOSITION XXIV. THEOREM.
Similar segments ofcircles upon equal straight lines, are equal to one another

Let ADB, CFD be similar segments of circles upon the equal

straight lines AB, CD.
Then the segment ADB shall be equal to the segment CFD.

E F

For if the segment ADB be applied to the segment CFD,
so that the point A may be on C, and the straight line AB upon CD,

then the point B shall coincide with the point D,
because AB is equal to CD

:

therefore, the straight line AB coinciding with CD,
the segment ADB must coincide with the segment CFD, fill. 23.)

and therefore is equal to it. (I. ax. 8.)

Wherefore similar segments, &c. Q.E.D.

PROPOSITION XXY. PROBLEM.
A segment of a circle being given, to describe the circle of which it is the

segment.

Let ABC he the given segment of a circle.

It is required to describe the circle of which it is the segment.

Bisect AC in D (1. 10.) and from the point D draw DB at right

angles to AC, (i. 11.) and join AB.
First, let the angles ABD, BAD be equal to one another :

(A.

then the straight line DA is equal to DB, (i. 6.) and therefore, to DC;
and because the three straight lines DA, DB, DC are all equal,

therefore D is the center of the circle, (ill. 9.)

From the center D, at the distance of any of the three DA, DB,
DC, describe a circle;

this shall pass through the other points

;

and the circle of which ABC is a segment has been described:
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and because the center D is in A C, the segment ABC is a semicircle.

But if the angles ABD, BAD are not equal to one another :

B B

ADC
at the point A, in the straight line AB,

make the angle BAH equal to the angle ABD, (I. 23.)

and produce BD, if necessary, to meet AB in E, and join EC.
Because the angle ABE is equal to the angle BAE,

therefore the straight line EA is equal to EB : (i. 6.)

and because AD is equal to DC, and DE common to the triangles

ADE, CDE,
the two sides AD, DE, are equal to the two CD, DE, each to each

;

and the angle ADE is equal to the angle CDE

;

for each of them is a right angle
;
(constr.)

therefore the base EA is equal to the base EC: (I. 4.)

but EA was shewn to be equal to EB :

wherefore also EB is equal to EC: (ax. 1.)

and therefore the three straight lines EA, EB, EC are equal to one
another

:

wherefore E is the center of the circle, (ill. 9.)

From the center E, at the distance of any of the three EA, EB,
EC, describe a circle

;

this shall pass through the other points

;

and the circle of which ABC is a segment, is described.

And it is evident, that if the angle ABD be greater than the angle

BAD, the center E falls without the segment ABC, which therefore

is less than a semicircle :

but if the angle ABD be less than BAD, the center E falls within

the segment ABC, which is therefore greater than a semicircle.

Wherefore a segment of a circle being given, the circle is described

of which it is a segment, q.e.f.

PROPOSITION XXVI. THEOREM.
In equal circles, equal angles stand upon equal arcs, whether the angles be

at i/ie centers or circumferences.

Let ABC, DEFbe equal circles,

and let the angles BGC, EJIE&t their centers,

and BAC, EDF oX their circumferences be equal to each other.

Then the arc BKC shall be equal to the arc ELF.
A D
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Join BC, EF.
And because the circles ABC, DBF are equal,

the straight lines drawn from their centers are equal : (ill. def. 1.)

therefore the two sides BG, GC, are equal to the two EH, IIF, each

to each

:

and the angle at G is equal to the angle at H; (hyp.)

therefore the base BCis equal to the base EF. (i. 4.)

And because the angle at A is equal to the angle at B, (hyp.)

the segment BAC is similar to the segment EDF: (in. def. 11.)

and they are upon equal straight lines BC, EF:
but similar segments of circles upon equal straight lines, are equal to

one another, (ill. 24.)

therefore the segment BAC is equal to the segment EDF:
but the whole circle ABC is equal to the whole DEF; (hyp.)

therefore the remaining segment BKC is equal to the remaining seg-

ment ELF, [i. ax. 3.)

and the arc BKC to the arc ELF.
Wherefore, in equal circles, &c. Q.E.D.

PROPOSITION XXVII, THEOREM.

In equal circles, the angles which stand upon equal arcs, are equal to one
another, whether they be at the centers or circumferences.

Let ABC, DEF he equal circles,

and let the angles BGC, EHF at their centers,

and the angles BA C, EDF at their circumferences,

stand upon the equal arcs BC, EF.
Then the angle BGC shall be equal to the angle EHF,

and the angle BA C to the angle EDF.

If the angle BGC he equal to the angle EHF,
it is manifest that the angle BA C is also equal to EDF. (ill. 20. and

I. ax. 7.)

But, if not, one of them must be greater than the other :

if possible, let the angle BGC he greater than EHF,
and at the point G, in the straight line BG,

make the angle BGK equal to the angle EHF. (I. 23.)

Then because the angle BGK is equal to the angle EHF,
and that equal angles stand upon equal arcs, when they are at the

centers
; (in. 26.)

therefore the arc BK is equal to the arc EF:
but the arc EF is equal to the arc BC; (hyp.)

therefore also the arc BK is equal to the arc BC,
the less equal to the greater, which is impossible: (i. ax. 1.)
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therefore the angle BG

C

is not unequal to the angle EHF',
that is, it is equal to it

:

but the angle at A is half of the angle JBGC, (ill. 20.)

and the angle at D, half of the angle EHF;
therefore the angle at A is equal to the angle at D. (l. as. 1.)

Wherefore, in equal circles, &e. Q.E.D.

PROPOSITION XXVIII. THEOREM.

In equal circles, equal straight lines cut off equal arcs, the greater equal

to the greater, and the less to the less.

Let ABC, DEFhe equal circles,

and BC, EF equal straight lines in them, which cut off the two greater
arcs BAC, EDF, and the two less BGC, EHF.

Then the greater arc BA C shall be equal to the greater EDF,
and the less arc BGC to the less EHF.

G

Take K,L, the centers of the circles, (in. 1.) and join BK, EC, EL, LF.
Because the circles ABC, DEF are equal,

the straight lines from their centers are equal : (in. def. 1.)

therefore BK, KC are equal to EL, LF, each to each %

and the base BC is equal to the base EF, in the triangles B CK, EFL;
therefore the angle BKC is equal to the angle ELF: (i. 8.)

but equal angles stand upon equal arcs, when they are at the

centers : (ill. 26.)

therefore the arc BGCh equal to the arc EHF:
but the whole circumference ABC is equal to the whole EDF-, (hyp.)

therefore the remaining part of the circumference,

viz. the arc BA C, is equal to the remaining part EDF. (i. ax. 3.)

Therefore, in equal circles, &c. q.e.d.

PROPOSITION XXIX. THEOREM.

In equal circles, equal arcs are subtended by equal straight lines.

Let ABC, DEF be equal circles,

and let the arcs BGC, EHF also be equal,

and joined by the straight lines BC, EF.
Then the straight line BC shall be equal to the straight line EF.

o
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Take K, L, (ill. 1.) the centers of the circles, andjoin BK, KC,EL, LF.
Because the arc JBGC is equal to the arc EJIF,

therefore the angle BKCis equal to the angle ELF: (III. 27.)

and because the circles ABC, DEF, are equal,

the straight lines from their centers are equal
;

(ill. def. 1.)

therefore BK, EC, are equal to EL, LF, each to each :

and they contain equal angles in the triangles BCK, EFL

;

therefore the base i?C is equal to the base EF. (I. 4.)

Therefore, in equal circles, &c. Q.E.D.

PROPOSITION XXX. PROBLEM.

To bisect a given arc, that is, to divide it into two equal parts.

Let AI)B be the given arc

:

it is required to bisect it.

^^
Join AB, and bisect it in C; (I. 10.)

from the point C draw CD at right angles to AB. (T. 11.)

Then the arc ADB shall be bisected in the point D.
Join AD, DB.

And because A C is equal to CB,
and CD common to the triangles A CD, B CD,

the two sides AC, CD are equal to the two BC, CD, each to each;

and the angle A CD is equal to the angle BCD,
because each of them is a right angle :

therefore the base AD is equal to the base BD. (I. 4.)

But equal straight lines cut off equal arcs, (ill. 28.)

the greater arc equal to the greater, and the less arc to the less

;

and the arcs A I), DB are each of them less than a semicircle

;

because DC, if produced, passes through the center: (ill. 1. Ccr.)

therefore the arc AD is equal to the arc DB.
Therefore the given arc ADB is bisected in D. Q.E.F.

PROPOSITION XXXI. THEOREM.

In a circle, the angle in a semicircle is a right angle ; but the angle in a

segment greater than a semicircle is less than a right angle ; and the angle

in a segment less than a semicircle is greater than a right angle.

Let ABCD be a circle, of which the diameter isBC, and center E,
and let CA be drawn, dividing the circle into the segments ABC, ADC.

Join BA, AD, DC.
Then the angle in the semicircle BAC shall be a right angle

;

and the angle in the segment ABC, which is greater than a semicircle,

shall be less than a right angle
;

and the angle in the segment ADC, which is less than a semicircle,

shall be greater than a right angle.
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Join AE, and produce BA to F.
First,, because EB is equal to iL4, (i. def. 15.)

the angle EAB is equal to _E5^[
;

(i. 5.)

also, because EA is equal to -Z?(7,

the angle ECA is equal to EAC;
wherefore the whole angle BACis equal to the two angles EBA,
ECA

;
(i. ax. 2.)

but FAC, the exterior angle of the triangle ABC, is equal to the two
angles EBA, EGA

;
(i. 32.)

therefore the angle JSAC is equal to the angle FAC; (ax. 1.)

and therefore each of them is a right angle: (i. def. 10.)

wherefore the angle BA C in a semicircle is a right angle.

Secondly, because the two angles ABC, BAC of the triangle

ABC are together less than two right angles, (I. 17.)

and that BA C has been proved to be a right angle

;

therefore ABC must be less than a right angle

:

and therefore the angle in a segment ABC greater than a semicircle,

is less than a right angle.

And lastly, because ABCD is a quadrilateral figure in a circle,

any two of its opposite angles are equal to two right angles: (ill. 22.)

therefore the angles ABC, ADC, are equal to two right angles:

and ABC has been proved to be less than a right angle

;

wherefore the other ADC is greater than a right angle.

Therefore, in a circle the angle in a semicircle is a right angle ; &c. Q.E.D.

Cor. From this it is manifest, that if one angle of a triangle be
equal to the other two, it is a right angle : because the angle adjacent

to it is equal to the same two; (i. 32.) and when the adjacent angles

are equal, they are right angles, (i. def. 10.)

PROPOSITION XXXII. THEOREM.

If a straight line touch a circle, andfrom the point of contact a straight
line be draicn meeting the circle ;' the angles xohich this line makes with the

line touching the circle shall be equal to the angles which are in the alter-

nate segments of the circle.

Let the straight line EF touch the circle ABCD in B,
and from the point B let the straight line BD be drawn, meeting

the circumference in D, and dividing it into the segments DCB, DAB,
of which DCB is less than, and DAB greater than a semicircle.

Then the angles which BD makes with the touching line EF,
shall be equal to the angles in the alternate segments of the circle

;

that is, the angle DBF shall be equal to the angle which is in the

segment DAB,
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and the angle DBF shall be equal to the angle in the alternate

segment D CB,
A

E B

From the point B draw BA at right angles to FF, (i. 11.) meeting
the circumference in A ;

take any point Cin the arc DB, and join AD, DC, CB.
Because the straight line FF touches the circle ABCD in the

point B,
and BA is drawn at right angles to the touching line from the

point of contact B,
the center of the circle is m BA : (ill. 19.)

therefore the angle ADB in a semicircle is a right angle : (ill. 31.)

and consequently the other two angles BAD, ABD, are equal to

a right angle
;

(i. 32.)

but ABF is likewise a right angle
;

(constr.)

therefore the angleABF is equal to the angles BAD, ABD: (i.ax.l.)

take from these equals the common angle ABD

:

therefore the remaining angle DBFis equal to the angle BAD, (l.ax.3.)

which is in BDA, the alternate segment of the circle.

And because ABCD is a quadrilateral figure in a circle,

the opposite angles BAD, BCD are equal to two right angles : (III. 22.)

but the angles DBF, DBF are likewise equal to two right angles

;

(I. 13.)

therefore the angles DBF, DBF are equal to the angles BAD,
BCD, (I. ax. 1.)

and DBF has been proved equal to BAD;
therefore the remaining angle DBF is equal to the angle BCD in

BDC, the alternate segment of the circle, (i. ax. 2.)

Wherefore, if a straight line, &c. Q. E. d.

PROPOSITION XXXIII. PROBLEM.

Upon a given straight line to describe a segment of a circle, which shall

contain an angle eqxial to a given rectilineal angle.

Let AB be the given straight line,

and the angle C the given rectilineal angle.

It is required to describe upon the given straight line AB, a segment
of a circle, which shall contain an angle equal to the angle (7.

First, let the angle C be a right angle.

-(ZX
A Y B
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Bisect AB in F, (I. 10.)

and from the center _F, at the distance -FIB, describe the semicircleAHB,
and draw AH, BH to any point H in the circumference.

Therefore the angle AHB in a semicircle is equal to the right

angle C (ill. 31.)

But if the angle Cbe not a right angle

:

at the point A, in the straight line AB,
make the angle BAD equal to the angle C, (i. 23.)

and from the point A draw AJE at right angles to AD; (i. 11.)

bisect AB in F, (i. 10.)

and from F draw FG at right angles to AB, (i. 11.) and join GB.
Because AF is equal to FB, and FG common to the triangles

AFG, BFG,
the two sides AF, FG are equal to the two BF, FG, each to each,

and the angle AFG is equal to the angle BFG; (i. def. 10.)

therefore the base AG is equal to the base GB
;

(i. 4.)

and the circle described from the center G, at the distance GA,
shall pass through the point B :

let this be the circle AHB.
The segment AHB shall contain an angle equal to the given rec-

tilineal angle C.

Because from the point A the extremity of the diameter AF,
AD is drawn at right angles to AF,

therefore AD touches the circle: (in. 16. Cor.)

and because AB, drawn from the point of contact A, cuts the circle,

the angle DAB is equal to the angle in the alternate segment
AHB: (III. 32.)

but the angle DAB is equal to the angle C; (constr.)

therefore the angle C is equal to the angle in the segment AHB.
Wherefore, upon the given straight line AB, the segment AHB

of a circle is described, which contains an angle equal to the given
angle C. Q.E.F.

PROPOSITION XXXIY. PROBLEM.
From a given circle to cut off a segment, which shall contain an angle

equal to a given rectilineal angle.

Let ABC he, the given circle, and D the given rectilineal angle.
It is required to cut off from the circle ABC a segment that shall

contain an angle equal to the given angle D.

H2
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E B F

Draw the straight line EF touching the circle ABC in any point B,
(III. 17.)

and at the point B, in the straight line BF,
make the angle FBC equal to the angle D. (I. 23.)

Then the segment BA C shall contain an angle equal to the given
angle J).

Because the straight line EF touches the circle ABC,
and BC is drawn from the point of contact B,

therefore the angle FBC is equal to the angle in the alternate

segment BA C of the circle : (ill. 32.)

but the angle FBCis equal to the angle D; (constr.)

therefore the angle in the segment BAG is equal to the angle

D. (I. ax. 1.)

Wherefore from the given circle ABC, the segment BAC is cut

off, containing an angle equal to the given angle D. Q. e.f.

PROPOSITION XXXV. THEOREM.
If two straight lines cut one another within a circle, the rectangle contained

by the segments of one of them, is equal to the rectangle contained by the

segments of the other.

Let the two straight lines A C, BD, eut one another in the point

E, within the circle AB CD.
Then the rectangle contained by AE, EC shall be equal to the

rectangle contained by BE, ED.

First, if A C, BD pass each of them through the center, so that E
is the center

;

it is evident that since AE. EC, BE, ED, being all equal, (I. def. 15.)

therefore the rectangle AE, EC is equal to the rectangle BE, ED.
Secondly, let one of them BD pass through the center, and cut the

other A C, which does not pass through the center, at right angles, in

the point E.
D



BOOK III. PROP. XXXV. 149

Then, ifBD be bisected in F,
Fis the center of the circle ABCD.

Join AF.
Because BD which passes through the center, cuts the straight

line A C, which does not pass through the center, at right angles in E,
therefore AF is equal to EC: (in. 3.)

and because the straight line BD is cut into two equal parts in the
point F, and into two unequal, parts in the point E,

therefore the rectangle BE, ED, together with the square on EF,
is equal to the square on FB

;
(n. 5.)

that is, to the square on FA :

but the squares on AE, EF, are equal to the square on FA : (I. 47.)

therefore the rectangle BE, ED, together with the square on EF,
is equal to the squares on AE, EF: (i. ax. 1.)

take away the common square on EF,
and the remaining rectangle BE, ED is equal to the remaining

square on AE; (i. ax. 3.)

that is, to the rectangle AE, EC.
Thirdly, let BD, which passes through the center, cut the otherA C,

which does not pass through the tenter, in E, but not at right angles.

Then, as before, if BD be bisected in F,
F is the center of the circle.

Join AF, and from F draw FG perpendicular to A C\ (I. 12.)

therefore AG is equal to GC; (III. 3.)

wherefore the rectangle AE, EC, together with the square on EG,
is equal to the square on AG: (n. 5.)

to each of these equals add the square on GF;
therefore the rectangle AE, EC, together with the squares on EG,

GF, is equal to the squares en AG, GF; (i. ax. 2.)

but the squares on EG, GF, are equal to the square on EF; (i. 47.)

and the squares on AG, GF are equal to the square on AF:
therefore the rectangle AE, EC, together with the square on EF,

is equal to the square on AF;
that is, to the square on FB

:

but the square on FB is equal to the rectangle BE, ED, together

with the square on EF; (n. 5.)

therefore the rectangle AE, EC, together with the square on EF,
fa equal to the rectangle BE, ED, together with the square on
FF; (i. ax. 1.)

take away the common square on EF,
and the remaining rectangle AE, EC, is therefore equal to the re-

maining rectangle BE, ED. (ax. 3.)

Lastly, let neither of the straight lines A C, BD pass through the
center-
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Take the center F, (ill. 1.)

and through E the intersection of the straight lines AC, DB,
draw the diameter GEFK.

And because the rectangle AE, EC is equal, as has been shewn,
to the rectangle GE, EH;

and for the same reason, the rectangle HE, ED is equal to the

same rectangle GE, EH-,
therefore the rectangle AE, EC is equal to the rectangle BE, ED.

(I. ax. 1.)

Wherefore, if two straight lines, &c. Q. E. D.

PROPOSITION XXXYI. THEOREM.
If from, any point without a circle two straight lines be drawn, one of

which cuts the circle, and the other touches it ; the rectangle contained by

the whole line which cuts the circle, and the part of it without the circle,

shall be equal to the square on the line which touches it.

Let D be any point without the circle ABC,
and let DCA, DB be two straight lines drawn from it,

of which DCA cuts the circle, and DB touches the same.

Then the rectangle AD, DC shall be equal to the square on DB.
Either DCA passes through the center, or it does not

:

first, let it pass through the center E.

D

(in. 18.)

E, and produced

Join EB,
therefore the angle EBD is a right angle.

And because the straight line A C is bisected in

to the point D,
therefore the rectangle AD, DC, together with the square on EC> is

equal to the square on ED : (n. 6.)

but CE is equal to EB :

therefore the rectangle AD, DC, together with the square on EB,
is equal to the square on ED

:

but the square on ED is equal to the squares on EB, BD, (i. 47.)

because EBD is a right angle

:

therefore the rectangle AD, DC, together with the square on EB.
is equal to the squares on EB, BD: (ax. 1.)



HOOK III. PROP, xxxvr. 151

take away tlie common square on EB;
therefore the remaining rectangle AD, DC is equal to the square

on the tangent DB. (ax. 3.)

Next, if DCA does not pass through the center of the circle ABC.

Take J^the center of the circle, (ill. 1.)

draw EF perpendicular to AC, (i. 12.) and join JEB, EC, ED.
Because the straight line EF, which passes through the center,

cuts the straight line A C, which does not pass through the center, at

right angles ; it also bisects A C, (ill. 3.)

therefore ^.Pis equal to FC;
and because the straight line A C is bisected in F, and produced to D,

the rectangle AD, DC, together with the square on FC,
is equal to the square on FD : (n. 6.)

to each of these equals add the square on FE;
therefore the rectangle AD, DC, together with the squares on CF, FE,

is equal to the squares on DF, FE: (i. ax. 2.)

but the square on ED is equal to the squares on DF, FE, (I. 47.)

because EFD is a right angle

;

and for the same reason,

the square on _Z?Cis equal to the squares on CF, FE;
therefore the rectangle AD, DC, together with the square on EC,

is equal to the square on ED : (ax. 1.)

but CE is equal to EB

;

therefore the rectangle AD, DC, together with the square on EB,
is equal to the square on ED :

but the squares on EB, BD, are equal to the square on ED, (I. 47.)

because EBD is a right angle :

therefore the rectangle AD, DC, together with the square on EB,
is equal to the squares on EB, BD ;

take away the common square on EB
;

and the remaining rectangle AD, DC is equal to the square

on DB. (i. ax. 3.)

Wherefore, if from any point, &c. q.e.d.
Cos. If from any point without a circle, there be drawn two straight
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lines cutting it, as AB, A C, the rectangles contained by the whole
lines and the parts of them without the circle, are equal to one
another, viz. the reetangle BA, AJE, to the rectangle CA, AF: for

each of them is equal to the square on the straight line A D, which
touches the circle.

PROPOSITION XXXVII. THEOREM.
Iffrom a point without a droit there be drawn two straight lines, one of

which cuts the circle, and the other meets it ; if the rectangle contained by the

•Mhole line which cuts the circle, and the part of it without the circle, be equal to

'lie square on the line which meets it, the line which meets, shall touch the circle.

Let any point D be taken without the circle ABC,
and from it let two straight lines DCA and DB be drawn, of which
DCA cuts the circle in the points C, A, and DB meets it in

the point B.
If the rectangle AD, DC he equal to the square on DB;

then DB shall touch the circle.

D

.Draw the straight line DB, touching the circle ABC, in the point

E; (HI. 17.)

find F, the center of the circle, (in. 1.)

and join i^S, FB, FD.
Then FDD is a right angle : (in. 18.)

and because DE touches the circle ABC, and DCA cuts it,

therefore the rectangle AD,DCh equal to the square on DE : (in. 36.)

but the rectangle AD, DC, is, by hypothesis,

equal to the square on DB

:

therefore the square on DE is equal to the square on DB; (i. ax. 1.)

and the straight line DE equal to the straight line DB

:

and FE is equal to FB ; (i. def. 15.)

wherefore DE, EF are equal to DB, BF, each to each

;

and the base FD is common to the two triangles DEF, DBF;
therefore the angle DEF is equal to the angle DBF : (I. 8.)

but DEF was shewn to be a right angle

;

therefore also DBF is a right angle : (i. ax. 1.)

and BF, if produced, is a diameter

;

and the straight line which is drawn at right angles to a diameter,

from the extremity of it, touches the circle
;

(in. 16. Cor.)

therefore DB touches the circle ABC.
Wherefore, if from a point, &c. Q. e. d



NOTES TO BOOK III.

In the Third Book ot the Elements are demonstrated the most
elementary properties of the circle, assuming all the properties of figures

demonstrated in the First and Second Books.
It may be worthy of remark, that the word circle will be found some-

times taken to mean the surface included within the circumference, and
sometimes the circumference itself. Euclid has employed the word (irepi-

(pspsia) periphery, both for the whole, and for a part of the circumference

of a circle. If the word circumference were restricted to mean the whole

circumference, and the word arc to mean a part of it, ambiguity might
be avoided when speaking of the circumference of a circle, where only
a part of it is the subject under consideration. A circle is said to

be given in position, when the position of its center is known, and
in magnitude, when its radius is known.

Def. i. And it may be added, or of which the circumferences are

equal. And conversely : if two circles be equal, their diameters and
radii are equal ; as also their circumferences.

Def. i. states the criterion of equal circles. Simson calls it a theorem ;

and Euclid seems to have considered it as one of those theorems, or

axioms, which might be admitted as a basis for reasoning on the equality

of circles.

Def. ii. There seems to be tacitly assumed in this definition, that a

straight line, when it meets a circle and does not touch it, must necessarily,

when produced, cut the circle.

A straight line which touches a circle, is called a tangent to the circle

;

and a straight line which cuts a circle is called a secant.

Def. iv. The distance of a straight line from the center of a circle

is the distance of a point from a straight line, which has been already
explained in note to Prop.xi. page 53.

Def. vi. x. An arc of a circle is any portion of the circumference
;

and a chord is the straight line joining the extremities of an arc. Every
chord except a diameter divides a circle into two unequal segments,
one greater than, and the other less than a semicircle. And in the same
manner, two radii drawn from the center to the circumference, divide
the circle into two unequal sectors which become equal when the two
radii are in the same straight line. As Euclid, however, does not notice

re-entering angles, a sector of the circle seems necessarily restricted

to the figure which is less than a semicircle. A quadrant is a sector

whose radii are perpendicular to one another, and which contains a fourth
part of the circle.

Def. vii. No use is made of this definition in the Elements.
Def. xi. The definition of similar segments of circles as employed in

the Third Book is restricted to such segments as are also equal. Props.
xxiii. and xxiv. are the only two instances, in which reference is made
to similar segments of circles.

Prop. i. " Lines drawn in a circle," always mean in Euclid, such
lines only as are terminated at their extremities by the circumference.

If the point G be in the diameter CE, but not coinciding with the
point F, the demonstration given in the text does not hold good. At
the same time, it is obvious that G cannot be the centre of the circle,

because GCis not equal to GE.

H 5



154 euclid's elements.

Indirect demonstrations are more frequently employed in the Third
Book than in the First Book of the Elements. Of the demonstrations
of the forty- eight propositions of the First Book, nine are indirect: but
of the thirty-seven of the Third Book, no less than fifteen are indirect
demonstrations. The indirect is, in general, less readily appreciated
by the learner, than the direct form of demonstration. The indirect form,
however, is equally satisfactory, as it excludes every assumed hypothesis
is false, except that which is made in the enunciation of the proposition.
It may be here remarked that Euclid employs three methods of de-
monstrating converse propositions. First, by indirect demonstrations as
in Euc. i. 6: in. 1, &c. Secondly, by shewing that neither side of a
possible alternative can be true, and thence inferring the truth of the
proposition, as in Euc. i. 19, 25. Thirdly, by means of a construction,
thereby avoiding the indirect mode of demonstration, as in Euc. i. 47 .

in. 37.

Prop. ii. In this proposition, the circumference of a circle is proved
to be essentially different from a straight line, by shewing that every
straight line joining any two points in the arc falls entirely within the
circle, and can neither coincide with any part of the circumference, nor
meet it except in the two assumed points. It excludes the idea of the
circumference of a circle being flexible, or capable under any circum-
stances, of admitting the possibility of the line falling outside the circle.

If the line could fall partly within and partly without the circle, the
circumference of the circle would intersect the line at some point between
its extremities, and any part xoithout the circle has been shewn to be
impossible, and the part within the circle is in accordance with the

enunciation of the Proposition. If the line could fall upon the cir-

cumference and coincide with it, it would follow that a straight line

coincides with a curved line.

From this proposition follows the corollary, that " a straight line

cannot cut the circumference of a circle in more points than two."
Commandine's direct demonstration of Prop. n. depends on the fol-

lowing axiom, " If a point be taken nearer to the center of a circle than
the circumference, that point falls within the circle."

Take any point E in AB, and join DA, DE, DB. (fig. Euc. its. 2.)

Then because DA is equal to DB in the triangle DAB

;

therefore the angle DAB is equal to the angle DBA
;

(i. o.)

but since the side AE of the triangle DAE is produced to B,

therefore the exterior angle DEB is greater than the interior and opposite

angle DAE] (i. 16.)

but the angle DAE is equal to the angle DBE,
therefore the angle DEB is greater than the angle DBE.

And in every triangle, the greater side is subtended by the greater angle

:

therefore the side DB is greater than the side DE
;

but DB from the center meets the circumference of the circle,

therefore DE does not meet it.

Wherefore the point E falls within the circle :

and E is any point in the straight line AB :

therefore the straight line AB falls within the circle.

Prop. vn. and Prop. vm. exhibit the same property ; in the former,

the point is taken in the diameter, and in the latter, in the diameter

produced.
Pkop. vm. An arc of a circle is said to be convex or concave with

respect to a point, according as the straight lines drawn from the point
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meet the otitside or inside of the circular arc : and the two points found
in the circumference of a circle by two straight lines drawn from a given

point to touch the circle, divide the circumference into two portions, one
of which is convex and the other concave, with respect to the given point.

Prop. ix. This appears to follow as a Corollary from Euc. in. 7.

Prop. xi. and Prop. xn. In the enunciation it is not asserted that

the contact of two circles is confined to a single point. The meaning
appears to be, that supposing two circles to touch each other in any
point, the straight line which joins their centers being produced, shall

pass through that point in which the circles touch each other. In
Prop. xin. it is proved that a circle cannot touch another in more points

than one, by assuming two points of contact, and proving that this is

impossible.

Prop. xin. The following is Euclid's demonstration of the case, in

which one circle touches another on the inside.

If possible, let the circle EBF touch the circle ABC on the inside,

in more points than in one point, namely in the points B, D. (fig. Euc.
in. 13.) Let P be the center of the circle ABC, and Q the center of EBF
JoinP, Q; then PQ produced shall pass through the points of contact B, D.
For since P is the center of the circle ABC, PB is equal to PD, but PB
is greater than QD, much more then is QB greater than QD. Again,
since the point Q is the center of the circle EBF, QB is equal to QD ; but
QB has been shewn to be greater than QD, which is impossible. One circle

therefore cannot toxichanotheron the inside inmore points than in one point.

Prop. xvi. may be demonstrated directly by assuming the following

axiom ;
" If a point be taken further from the center of a circle than the

circumference, that point falls without the circle."

If one circle touch another, either internally or externally, the two
circles can have, at the point of contact, only one common tangent.

Prop. xvn. "When the given point is without the circumference of

the given circle, it is obvious that two equal tangents may be drawn
from the given point to touch the circle, as may be seen from the diagram
to Prop. vin.

The best practical method of drawing a tangent to a circle from a given
point without the circumference, is the following : join the given point
and the center of the circle, upon this line describe a semicircle cutting
the given circle, then the line drawn from the given point to the inter-

section will be the tangent required.

Circles are called concentric circles when they have the same center.

Prop, xviii. appears to be nothing more than the converse to Prop.
xvi., because a tangent to any point of a circumference of a circle is a
straight line at right angles at the extremity of the diameter which meets
the circumference in that point.

Prop. xx. This proposition is proved by Euclid only in the case in
which the angle at the circumference is less than a right angle, and the
demonstration is free from objection. If, however, the angle at the cir-

cumference be a right angle, the angle at the center disappears, by the
two straight lines from the center to the extremities of the arc becoming
one straight line. And, if the angle at the circumference be an obtuse
angle, the angle formed by the two lines from the center, does not stand
on the same arc, but upon the arc which the assumed arc wants of the
whole circumference.

If Euclid's definition of an angle be strictly observed, Prop. xx. is

geometrically true, only when the angle at the center is less than two
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right angles. If, however, the defect of an angle from four right angles
may be regarded as an angle, the proposition is universally true, as may
be proved by drawing a line from the angle in the circumference through
the center, and thus forming two angles at the center, in Euclid's strict

sense of the term.
In the first case, it is assumed that, if there be four magnitudes, such

that the first is double of the second, and the third double of the fourth,
then the first and third together shall be double of the second and fourth
together : also in the second case, that if one magnitude be double of
another, and a part taken from the first be double of a part taken from
the second, the remainder of the first shall be double the remainder of
the second, which is, in fact, a particular case of Prop. v. Book v.

Prop. xxi. Hence, the locus of the vertices of all triangles upon the
same base, and which have the same vertical angle, is a circular arc.

Prop. xxit. The converse of this Proposition, namely: If the oppo-
site angles of a quadrilateral figure be equal to two right angles, a circle

can be described about it, is not proved by Euclid.
It is obvious from the demonstration of this proposition, that if any

side of the inscribed figure be produced, the exterior angle is equal
to the opposite angle of the figure.

Prop, xxiii. It is obvious from this proposition that of two circular

segments upon the same base, the larger is that which contains the
smaller angle.

Prop. xxv. The three cases of this proposition may be reduced to one,

by drawing any two contiguous chords to the given arc, bisecting them,
and from the points of bisection drawing perpendiculars. The point in

•which they meet will be the center of the circle. This problem is equi-

valent to that of finding a point equally distant from three given points.

Props, xxvi—xxix. The properties predicated in these four proposi-

tions with respect to equal circles, are also true when predicated of

the same circle.

Prop. xxxi. suggests a method of drawing a line at right angles to

another when the given point is at the extremity of the given line. And
that if the diameter of a circle be one of the equal sides of an isosceles

triangle, the base is bisected by the circumference.
Prop. xxxv. The most general case of this Proposition might have

been first demonstrated, and the other more simple cases deduced from it.

But this is not Euclid's method. He always commences with the more
simple case and proceeds to the more difficult afterwards. The following

process is the reverse of Euclid's method.
Assuming the construction in the last fig. to Euc. in. 35. Join FA, FD,

and draw FK perpendicular to AC, and FL perpendicular to BD.
Then (Euc. n. 5. ) the rectangle AE, EC with square on EK is equal to

the square on AK: add to these equals the square on FK: therefore the

rectangle AE, EC, with the squares on EK, FK, is equal to the square?

on AK, FK. But the squares on EK, FK are equal to the square on EF,
and the squares on AK, FIT are equal to the square on AF. Hence the

rectangle AE, EC, with the square on EF is eqaal to the square on AF.
In a similar way may be shewn, that the rectangle BE, ED with the

square on EF is equal to the square on FD. And the square on FD is

equal to the square on AD. Wherefore the rectangle AE, EC with the

square on EFis equal to the rectangle BE. ED with the square on EF.
Take from these equals the square on EF, and the rectangle AE, EC
is efial to the rectangle BE, ED.
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The other more simple cases may easily be deduced from this general
case.

The converse is not proved by Euclid ; namely,—If two straight lines

intersect one another, so that the rectangle contained by the parts of
one is equal to the rectangle contained by the parts of the other ; then
a circle may be described passing through the extremities of the two
lines. Or, in other words :—If the diagonals of a quadrilateral figure

intersect one another, so that the rectangle contained by the segments
of one of them is equal to the rectangle contained by the segments of the
other ; then a circle may be described about the quadrilateral.

Prop, xxxvi. The converse of the corollary to this proposition may
be thus stated :—If there be two straight lines, such that, when pro-
duced to meet, the rectangle contained by one of the lines produced, and
the part produced, be equal to the rectangle contained by the other
line produced and the part produced; then a circle can be described
passing through the extremities of the two straight lines. Or, If two
opposite sides of a quadrilateral figure be produced to meet, and the
rectangle contained by one of the sides produced and the part produced,
be equal to the rectangle contained by the other side produced and the
part produced ; then a circle may be described about the quadrilateral
figure.

Prop, xxxvii. The demonstration of this theorem may be made
shorter by a reference to the note on Euclid in. Def. 2 : for if DB meet
the circle in B and do not touch it at that point, the line must, when
produced, cut the circle in two points.

It is a circumstance worthy of notice, that in this proposition, as well

as in Prop, xlviii. Book i. Euclid departs from the ordinary ex absurdo

mode of proof of converse propositions.

QUESTIONS ON BOOK III.

1

.

Define accurately the terms radius, arc, circumference, chord, secant.

2. How does a sector differ in form from a segment of a circle ? Are
they in any case coincident ?

3. What is Euclid's criterion of the equality of two circles ? What
is meant by a given circle ? How many points are necessary to deter-

mine the magnitude and -position of a circle ?

4. When are segments of circles said to be similar ? Enunciate the

propositions of the Third Book of Euclid, in which this definition is em-
ployed. Is it employed in a restricted or general form ?

5. In how many points can a circle be cut by a straight line and by
another circle ?

6. When are straight lines equally distant from the center of a circle?

7. Shew the necessity of an indirect demonstration in Euc. in. 1.

8. Find the centre of a given circle without bisecting any straight

line.

9. Shew that if the circumference of one of two equal circles pass
through the center of the other, the portions of the two circles, each of

which lies without the circumference of the other circle, are equal.

10. If a straight line passing through the center of a circle bisect a

straight line in it, it shall cut it at right angles. Point out the excep-
tion ; and shew that if a straight line bisect the arc and base of a segment
of a circle, it will, when produced, pass through the center.
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11. If any point be taken within a circle, and a right line be drawn
from it to the circumference, how many lines can generally be drawn
equal to it r Draw them.

12. Find the shortest distance between a circle and a given straight

line without it.

13. Shew that a circle can only have one center, stating the axioms
upon which your proof depends.

14. Why would not the demonstration of Euc. in. 9, hold good, i

there were only two such equal straight lines ?

15. Two parallel chords in a circle are respectively six and eight inches
in length, and one inch apart ; how many inches is the diameter in length ?

16. Which is the greater chord in a circle whose diameter is 1 inches
;

that whose length is 5 inches, or that whose distance from the center is

4 inches ?

17. What is the locus of the middle points of all equal straight lines

in a circle ?

18. The radius of a circle BCDGF, (fig. Euc. in. 15.) whose center

is E, is equal to five inches. The distance of the line FG from the center

is four inches, and the distance of the line BC from the center is three

inches, required the lengths of the lines FG, BC.
19. If the chord of an arc be twelve inches long, and be divided into

two segments of eight and four inches by another chord : what is the

length of the latter chord, if one of its segments be two inches ?

20. What is the radius of that circle of which the chords of an arc

and of double the arc are five and eight inches respectively ?

21. If the chord of an arc of a circle whose diameter is 8| inches,

be five inches, what is the length of the chord of double the arc of the

same circle ?

22. State when a straight line is said to touch a circle, and shew
from your definition that a straight line cannot be drawn to touch a circle

from a point within it.

23. Can more circles than one touch a straight line in the same
point ?

24. Shew from the construction, Euc. in. 17, that two equal straight

lines, and only two, can be drawn touching a given circle from a given
point without it : and one, and only one, from a point in the cir-

cumference.
25. What is the locus of the centers of all the circles which touch

a straight line in a given point ?

26. How may a tangent be drawn at a given point in the circum-

ference of a circle, without knowing the center?

27. In a circle place two chords of given length at right angles to

each other.

28. From Euc. in. 19, shew how many circles equal to a given

circle may be drawn to touch a straight line in the same point.

29. Enunciate Euc. in. 20. Is this true, when the base is greater

than a semicircle ? If so, why has Euclid omitted this case ?

30. The angle at the center of a circle is double of that at the circum-

ference. How will it appear hence that the angle in a semicircle is aright

angle ?

31. What conditions are essential to the possibility ofthe inscription

and circumscription of a circle in and about a quadrilateral figure ?

32. What conditions are requisite in order that a parallelogram may
be inscribed in a circle ? Are there any analogous conditions requisite

that a parallelogram may be described about a circle ?

33. Define the angle in a segment of a circle, and the angle on a seg-
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ment ; and shew that in the same circle, they are together equal to two
right angles.

34. State and prove the converse of Euc. in. 22.

35. All circles which pass through two given points have their centers

in a certain straight line.

36. Describe the circle of which a given segment is a part. Give
Euclid's more simple method of solving the same problem independently
of the magnitude of the given segment.

37. In the same circle equal straight lines cut off equal circumfer-

ences. If these straight lines have any point common to one another, it

must not be in the circumference. Is the enunciation given complete ?

38. Enunciate Euc. in. 31, and deduce the proof of it from Euc. in. 20.

39. What is the locus ofthe vertices of all right-angled triangles which
can be described upon the same hypotenuse ?

40. How may a perpendicular be drawn to a given straight line from
one of its extremities without producing the line ?

41. If the angle in a semicircle be a right angle ; what is the angle
in a quadrant ?

42. The sum of the squares of any two lines drawn from any point

in a semicircle to the extremity of the diameter is constant. Express
that constant in terms of the radius.

43. In the demonstration of Euc. in. 30, it is stated that " equal
straight lines cut off equal circumferences, the greater equal to the greater,

and the less to the less :" explain by reference to the diagram the meaning
of this statement.

44. How many circles may be described so as to pass through one,

two, and three given points ? In what case is it impossible for a circle

to pass through three given points ?

45. Compare the circumference of the segment (Euc. ill. 33.) with
the whole circumference when the angle contained in it is a right angle

and a half.

46. Include the four cases of Euc. in. 35, in one general proot.

47. Enunciate the propositions which are converse to Props. 32, 35

of Book in.

48. If the position of the center of a circle be known with respect

to a given point outside a circle, and the distance of the circumference to

the point be ten inches : what is the length of the diameter of the circle,

if a tangent drawn from the given point be fifteen inches ?

49. If two straight lines be drawn from a point without a circle, and
be both terminated by the concave part of the circumference, and if

one of the lines pass through the center, and a portion of the other

line intercepted by the circle, be equal to the radius : find the diameter
of the circle, if the two lines meet the convex part of the circumference,
a, b, units respectively from the given point.

50. Upon what propositions depends the demonstration of Euc. in.

35 ? Is any extension made of this proposition in the Third Book ?

51. What conditions must be fulfilled that a circle may pass through
four given points ?

52. Why is it considered necessary to demonstrate all the separate

cases of Euc. in. 35, 36, geometrically, which are comprehended in one
formula, when expressed by Algebraic symbols ?

53. Enunciate the converse propositions of the Third Book of Euclid
which are not demonstrated ex absurdo : and state the three methods
which Euclid employs in the demonstration of converse propositions in

the First and Third Books of the Elements
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PROPOSITION I. THEOREM.

If AB, CD be chords of a circle at right angles to each other, prove that the

sum of the arcs AC, BD is equal to the sum of the arcs AD, BC.

Draw the diameter FGH parallel to AB, and cutting CD in H.
D

Then the arcs FDG and FCG are each half the circumference.

Also since CD is bisected in the point H,
the arc FD is equal to the arc FC,

and the arc FD is equal to the arcs FA, AD, of which, AF is

equal to BG,
therefore the arcs AD, BG are equal to the arc FC;

add to each CG,
therefore the arcs AD, BC are equal to the arcs JFC, CG, which make

up the half circumference.

Hence also the arcs A C, DB are equal to half the circumference.

Wherefore the arcs AD, BC are equal to the arcs AC, DB.

PROPOSITION II. PROBLEM.

The diameter of a circle having been produced to a given point, it is required

to find in the part produced a poi7it, from which if a tangent be drawn to the

circle, it shall be equal to the segment of the part produced, that is, between the

given point and the point found.

Analysis. Let AEB be a circle whose center is C, and whose dia-

meter AB is produced to the given point D.
Suppose that G is the point required, such that the segment GD

is equal to the tangent GE drawn from G to touch the circle in E.

Y
E

kt

Join DE and produce it to meet the circumference again in F;
join also CE and CF.

Then in the triangle GDE, because GD is equal to GE,
therefore the angle GED is equal to the angle GDE;



GEOMETRICAL EXERCISES ON BOOK III. 161

and because CE is equal to CF,
the angle CEF is equal to the angle CFE',

therefore the angles CEF, GED are equal to the angles CFE,
GDE:

but since GE is a tangent at E,
therefore the angle CEG is a right angle, (in. 18.)

hence the angles CEF, GEF are equal to a right angle,

and consequently, the angles CFE, EDG are also equal to a right

angle,

wherefore the remaining angle FCD rA the triangle CFE is a right

angle,

and therefore CFis perpendicular to AD.
Synthesis. From the center C, draw CF perpendicular to AD

meeting the circumference of the circle in F:
join DF cutting the circumference in E,

join also CE, and at E draw EG perpendicular to CE and inter-

secting ED in G.
Then G will be the point required.

For in the triangle CFD, since FCD is a right angle, the angles

CFD, CDF are together equal to a right angle
;

also since CEG is a right angle,

therefore the angles CEF, GED are together equal to a right

angle

;

therefore the angles CEF, GED are equal to the angles CFD,
CDF;

but because CE is equal to CF,
the angle CEF is equal to the angle CFD,

wherefore the remaining angle GED is equal to the remaining
angte CDF,

and the side GD is equal to the side GE of the triangle EGD,
therefore the point G is determined according to the required

conditions.

PROPOSITION III. THEOREM.

// a chord of a circle be produced till the part produced be equal to the

radius, and if from its extremity a line be drawn through the center and

meeting the convex and concave circumferences, the convex is one-third of the

concave circumference.

Let AB any chord be produced to C, so that BC is equal to the

radius of the circle :

and let CE be drawn from C through the center D, and meeting
the convex circumference in F, and the concave in E.

Then the arc BF is one-third of the arc AE.
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Draw EG parallel to AB, and join DB, DG.
Since the angle DEG is equal to the angle DGE

;
(i. 5.)

and the angle GDF is equal to the angles DEG, DGE; (i. 32.)

therefore the angle GDC is double of the angle DEG.
But the angle BDC is equal to the angle BCD, (i. 5.)

and the angle CEG is equal to the alternate angle A CE
;

(I. 29.)

therefore the angle GDC is double of the angle CDB,
add to these equals the angle CDB,

therefore the whole angle GDB is treble of the angle CDB,
but the angles GDB, CDB at the center D, are subtended by the

arcs BE, BG, of which BG is equal to AE.
Wherefore the circumference AE is treble of the circumference

BE, and BE is one-third of AE.
Hence may be solved the following problem

:

AE, BE are two arcs of a circle intercepted between a chord and
a given diameter. Determine the position of the chord, so that one
arc shall be triple of the other.

PROPOSITION IY. THEOREM.

AB, AG and ED are tangents to the circle CFB; at whatever point

between C and B the tangent EFD is drawn, the three sides of the triangle

AED are equal to twice AB or twice AC: also the angle subtended by the

tangent EFD at the center of the circle, is a constant quantity.

Take G the center of the circle, and join GB, GE, GF, GD, GC.
Then EB is equal to EF, and DC to DE; (in. 37.)

therefore ED is equal to EB and DC',
to each of these add AE, AD,

wherefore AD, AE, ED are equal to AB, AC;
and AB is equal to AC,

therefore AD, AE, ED are equal to twice AB, or twice A C;
or the perimeter of the triangle AED is a constant quantity.

Again, the angle EGFis half of the angle BGF,
and the angle DGE is half of the angle CGF,

therefore the angle DGE is half of the angle CGB,
or the angle subtended by the tangent ED at G, is half ofthe angle

contained between the two radii which meet the circle at the points

where the two tangents AB, A C meet the circle.

PROPOSITION Y. PROBLEM.

Given the base, the vertical angle, and the perpendicular in a plane iriangk,

to construct it.
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Upon the given base AB describe a segment of a circle containing

an angle equal to the given angle, (in. 33.)

D

At the point B draw BC perpendicular to AB, and equal to the

altitude of the triangle. (I. 11, 3.)

Through C, draw CDE parallel to AB, and meeting the circum-

ference in D and E. (i. 31.)

Join DA, DB ; also JEA, JEB
;

then FAB or BAB is the triangle required.

It is also manifest, that if CDE touch the circle, there will be only

one triangle which can be constructed on the base AB with the given

altitude.

PROPOSITION VI. THEOREM.

If two chords of a circle intersect each other at right angles either within or

without the circle, the sum of the squares described upon the four segments, is

equal to the square described upon the diameter.

Let the chords AB, CD intersect at right angles in E.

A

Draw the diameter AF, and join AC, AD, CF, DB.
Then the angle ACF in a semicircle is a right angle, (in. 31.)

and equal to the angle AED

:

also the angle ADC is equal to the angle AFC. (in. 21.)

Hence in the triangles ADD, AFC, there are two angles in the one
respectively equal to two angles in the other,

consequently, the third angle CAF is equal to the third angle

DAB;
therefore the arc DB is equal to the arc CF, (in. 26.)

and therefore also the chord DB is equal to the chord CF. (in. 29.)

Because AFCis a right-angled triangle,

the squares on AF, EC are equal to the square on A C; (i. 47.)
similarly, the squares on DE, EB are equal to the square on DB

;

therefore the squares on AE, EC, DE, EB, are equal to the squares
onAC,DB;

but DB was proved equal to FC,
and the squares on AC, FC are equal to the square on AF

\
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wherefore the squares on AE, EC, BE, EJ3, are equal to the square
on AF, the diameter of the circle.

When the chords meet without the circle, the property is proved
in a similar manner.

1.

7. Through a given point within a circle, to draw a chord which
shall be bisected in that point, and prove it to be the least.

8. To draw that diameter of a given circle which shall pass at a

given distance from a given point.

9. Find the locus of the middle points of any system of parallel

chords in a circle.

10. The two straight lines which join the opposite extremities of

two parallel chords, intersect in a point in that diameter which is

perpendicular to the chords.

11. The straight lines joining towards the same parts, the extre-

mities of any two lines in a circle equally distant from the center, are

parallel to each other.

12. A, B, C, A', B', C are points on the circumference of a circle
;

if the lines AB, A Che respectively parallel to A'B', A'C, shew that

BC is parallel to B' C.

13. Two chords of a circle being given in position and magnitude,
describe the circle.

14. Two circles are drawn, one lying within the other
;
prove that

no chord to the outer circle can be bisected in the point in which it

touches the inner, unless the circles are concentric, or the chord be
perpendicular to the common diameter. If the circles have the same
center, shew that every chord which touches the inner circle is bisected

.n the point of contact.

15. Draw a chord in a circle, so that it may be double of its per-

pendicular distance from the center.

16. The arcs intercepted between any two parallel chords in a circle

are equal.

17. If any point P be taken in the plane of a circle, and PA,
PB, PC,.. be drawn to any number of points A, B, C, .. situated

symmetrically in the circumference, the sum of PA, PB,

.

. is least

when P is at the center of the circle.

II.

18. The sum of the arcs subtending the vertical angles made by
any two chords that intersect, is the same, as long as the angle of inter-

section is the same.
19. From a point without a circle two straight lines are drawn

cutting the convex and concave circumferences, and also respectively

parallel to two radii of the circle. Prove that the difference of the

concave and convex arcs intercepted by the cutting lines, is equal to

twice the arc intercepted by the radii.

20. In a circle with center 0, any two chords, AB, CD are drawn



ON BOOK III. 165

cutting in E, and OA, OB, OC, OB are joined
;
prove that the angles

AOC+ BOD = 2.AEC, and AOB + BOC=2.AEB.
21. If from any point without a circle, lines be drawn cutting the

circle and making equal angles with the longest line, they will cut off

equal segments.

22. If the corresponding extremities of two intersecting chords' of

a circle be joined, the triangles thus formed will be equiangular.

23. Through a given point within or without a circle, it is required

to draw a straight line cutting off a segment containing a given angle.

24. If on two lines containing an angle, segments of circles be

described containing angles equal to it, the lines produced will touch

the segments.

25. Any segment of a circle being described on the base of a tri-

angle ; to describe on the other sides segments similar to that on the

base.

26. If an arc of a circle be divided into three equal parts by three

straight lines drawn from one extremity of the arc, the angle con-

tained by two of the straight lines is bisected by the third.

27. If the chord of a given circular segment be produced to a

fixed point, describe upon it when so produced a segment of a circle

which shall be similar to the given segment, and shew that the two
segments have a common tangent.

28. If AD, CE be drawn perpendicular to the sides BC, AB of

the triangle ABC, and BE be joined, prove that the angles ABE,
and A CE are equal to each other.

29. If from any point in a circular arc, perpendiculars be let fall

on its bounding radii, the distance of their feet is invariable.

III.

30. If both tangents be drawn (fig. Euc. in. 17.) and the points

of contact joined by a straight line which cuts EA in H, and on HA
as diameter a circle be described, the lines drawn through E to touch

this circle will meet it on the circumference of the given circle.

31. Draw, (1) perpendicular, (2) parallel to a given line, a line

touching a given circle.

32. If two straight lines intersect, the centers of all circles that

can be inscribed between them, lie in two lines at right angles to each

other.

33. Draw two tangents to a given circle, which shall contain an
angle equal to a given rectilineal angle.

34. Describe a circle with a given radius touching a given line, and
so that the tangents drawn to it from two given points in this line

may be parallel, and shew that if the radius vary, the locus of the

centers of the circles so described is a circle.

35. Determine the distance of a point from the center of a given

circle, so that if tangents be drawn from it to the circle, the concave
part of the circumference may be double of the convex.

36. In a chord of a circle produced, it is required to find a point,

from which if a straight line be drawn touching the circle, the line so

drawn shall be equal to a given itraight line.
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37. Find a point without a given circle, such that the sum of the

two lines drawn from it touching the circle, shall be equal to the line

drawn from it through the center to meet the circle.

38. If from a point without a circle two tangents be drawn ; the

straight line which joins the points of contact will be bisected at right

angles by a line drawn from the center to the point without the circle.

39. If tangents be drawn at the extremities of any two diameters
of a circle, and produced to intersect one another ; the straight lines

joining the opposite points of intersection will both pass through
the center.

40. If from any point without a circle two lines be drawn touching
the circle, and from the extremities of any diameter, lines be drawn to

the point of contact cutting each other within the circle, the line drawn
from the points without the circle to the point of intersection, shall be
perpendicular to the diameter.

41. If any chord of a circle be produced equally both ways, and
tangents to the circle be drawn on opposite sides of it from its extre-

mities, the line joining the points of contact bisects the given chord.

42. AB is a chord, and AD is a tangent to a circle at A. DPQ
any secant parallel to AB meeting the circle in P and Q. Shew that

the triangle PAD is equiangular with the triangle QAB.
43. If from any point in the circumference of a circle a chord and

tangent be drawn, the perpendiculars dropped upon them from the

middle point of the subtended arc, are equal to one another.

IV.

44. In a given straight line to find a point at which two other

straight lines being drawn to two given points, shall contain a right

angle. Shew that if the distance between the two given points be

greater than the sum of their distances from the given line, there will

be two such points ; if equal, there may be only one ; if less, the

problem may be impossible.

45. Find the point in a given straight line at which the tangents

to a given circle will contain the greatest angle.

46. Of all straight lines which can be drawn from two given points

to meet in the convex circumference of a given circle, the sum of those

two will be the least, which make equal angles with the tangent at the

point of concourse.

47. DF is a straight line touching a circle, and terminated by
AD, BF, the tangents at the extremities of the diameter AB, shew
that the angle which DF subtends at the center is a right angle.

48. If tangents Am, Bn be drawn at the extremities of the dia-

meter of a semicircle, and any line in mPn crossing them and touching

the circle in P, and if AN, B3Ihe joined intersecting in O and cutting

the semicircle in JE and F; shew that O, P, and the point of intersec-

tion of the tangents at E and F, are in the same straight line.

49. If from a point P without a circle, any straight line be drawn
cutting the circumference in A and B, shew that the straight lines

joining the points A and B with the bisection of the chord of contact

of the tangents from P, make equal angles with that chord.
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50. Describe a circle which shall pass through a given point and
which shall touch a given straight line in a given point.

51. Draw a straight line which shall touch a given circle, and
make a given angle with a given straight line.

52. Describe a circle the circumference of which shall pass through
a given point and touch a given circle in a given point.

53. Describe a circle with a given center, such that the circle so

described and a given circle may touch one another internally.

54. Describe the circles which shall pass through a given point

and touch two given straight lines.

55. Describe a circle with a given center, cutting a given circle in

the extremities of a diameter.

56. Describe a circle which shall have its center in a given straight

line, touch another given line, and pass through a fixed point in the

first given line.

57. The center of a given circle is equidistant from two given

straight lines ; to describe another circle which shall touch the two
straight lines and shall cut off from the given circle a segment con-

taining an angle equal to a given rectilineal angle.

VI.

58. If any two circles the centers of which are given, intersect

each other, the greatest line which can be drawn through either point

of intersection and terminated by the circles, is independent of the

diameters of the circles.

59. Two equal circles intersect, the lines joining the points in

which any straight line through one of the points of section, which
meets the circles with the other point of section, are equal.

60. Draw through one of the points in which any two circles cut

one another, a straight line which shall be terminated by their circum-
ferences and bisected in their point of section.

61. Describe two circles with given radii which shall cut each
other, and have the line between the points of section equal to a given
line.

62. Two circles cut each other, and from the points of intersection

straight lines are drawn parallel to one another, the portions inter-

cepted by the circumferences are equal.

63. ACB, ADB are two segments of circles on the same base
AB, take any point Cin the segment ACB; join AC, BC, and pro-

duce them to meet the segment ADB in D and E respectively : shew
that the arc DE is constant.

64. ADB, ACB, are the arcs of two equal circles cutting one
another in the straight line AB, draw the chord A CD cutting the
inner circumference in C and the outer in D, such that AD and DB
together may be double of A C and CB together.

65. If from two fixed points in the circumference of a circle,

straight lines be drawn intercepting a given arc and meeting without
the circle, the locus of their inters ctions is a circle.
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66. If two circles intersect, the common chord produced bisects

the common tangent.

67. Shew that, if two circles cut each other, and from any point
in the straight line produced, which joins their intersections, two tan-

gents be drawn, one to each circle, they shall be equal to one another.
68. Two circles intersect in the points A and B ; through A and

B any two straight lines CAD, EBF, are drawn cutting the circles in

the points C, _D, JE, F; prove that CJB is parallel to DF.
69. Two equal circles are drawn intersecting in the points A and

B, a third circle is drawn with center A and any radius not greater
than AB intersecting the former circles in D and C. Shew that the
three points, B, C, I) lie in one and the same straight line.

70. If two circles cut each other, the straight line joining their

centers will bisect their common chord at right angles.

71. Two circles cut one another ; if through a point of intersection

a straight line is drawn bisecting the angle between the diameters at

that point, this line cuts off similar segments in the two circles.

72. A CB, APB are two equal circles, the center ofAPB being
on the circumference of ACB, AB being the common chord, if any
chord AC of ACB be produced to cut APB in P, the triangle PBC
is equilateral.

VII.

73. If two circles touch each other externally, and two parallel

lines be drawn, so touching the circles in points A and B respectively

that neither circle is cut, then a straight line AB will pass through
the point of contact of the circles.

74. A common tangent is drawn to two circles which touch each
other externally ; if a circle be described on that part of it which lies

between the points of contact, as diameter, this circle will pass through
the point of contact of the two circles, and will touch the line which
joins their centers.

75. If two circles touch each other externally or internally, and
parallel diameters be drawn, the straight line joining the extremities

of these diameters will pass through the point of contact.

76. If two circles touch each other internally, and any circle be
described touching both, prove that the sum of the distances of its

center from the centers of the two given circles will be invariable.

77. If two circles touch each other, any straight line passing

through the point of contact, cuts off similar parts of their circumfe-

rences.

78. Two circles touch each other externally, the diameter of one

being double of the diameter of the other ; through the point of con-

tact any line is drawn to meet the circumferences of both ; shew that

the part of the line which lies in the larger circle is double of that in

the smaller.

79. If a circle roll within another of twice its size, any point in

its circumference will trace out a diameter of the first.

80. With a given radius, to describe a circle touching two given
circels.
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81. Two equal circles touch one another externally, and through

the point of contact chords are drawn, one to each circle, at right

angles to each
;
prove that the straight line joining the other extre-

mities of these chords is equal and parallel to the straight line joining

the centres of the circles.

82. Two circles can be described, each of which shall touch a

given circle, and pass through two given points outside the circle;

shew that the angles which the two given points subtend at the two

points of contact, are one greater and the other less than that which

they subtend at any other point in the given circle.

VIII.

83. Draw a straight line which shall touch two given circles;

(1) on the same side
; (2) on the alternate sides.

84. If two circles do not touch each other, and a segment of the

line joining their centers be intercepted between the convex circum-

ferences, any circle whose diameter is not less than that segment may
be so placed as to touch both the circles.

85. Given two circles : it is required to find a point from which
tangents may be drawn to each, equal to two given straight lines.

86. Two dipcles are traced on a plane ; draw a straight line

cutting them in such a manner that the chords intercepted within the

circles shall have given lengths.

87. Draw a straight line which shall touch one of two given circles

and cut off a given segment from the other. Of how many solutions

does this problem admit ?

88. If from the point where a common tangent to two circles

meets the line joining their centers, any line be drawn cutting the
circles, it will cut off similar segments.

S9. To find a point _P, so that tangents drawn from it to the out-

sides of two equal circles which touch each other, may contain an angle
equal to a given angle.

90. Describe a circle which shall touch a given straight line at a
given point, and bisect the circumference of a given circle.

91. A circle is described to pass through a given point and cut a
given circle orthogonally, shew that the locus of the center is a certain

straight line.

92. Through two given points to describe a circle bisecting the
circumference of a given circle.

93. Describe a circle through a given point, and touching a given
straight line, so that the chord joining the given point and point of
contact, may cut off a segment containing a given angle.

94., To describe a circle through two given points to cut a straight
line given in position, so that a diameter of the circle drawn through
the point of intersection, shall make a given angle with the line.

95. Describe a circle which should pass through two given points
and cut a given circle, so that the chord of intersection may be of a
given length.
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IX.

96. The circumference of one circle is wholly within that of an-

other. Find the greatest and the least straight lines that can be drawn
touching the former and terminated by the latter.

97. Draw a straight line through two concentric circles, so that the

chord terminated by the exterior circumference may be double that

terminated by the interior. What is the least value of the radius oi

the interior circle for which the problem is possible ?

98. If a straight line be drawn cutting any number of concentric

circles, shew that the segments so cut off are not similar.

99. If from any point in the circumference of the exterior of two
concentric circles, two straight lines be drawn touching the interior

and meeting the exterior ; the distance between the points of contact

will be half that between the points of intersection.

100. Shew that all equal straight lines in a circle will be touched

by another circle.

101. Through a given point draw a straight line so that the part

intercepted by the circumference of a circle, shall be equal to a given
straight line not greater than the diameter.

102. Two circles are described about the same center, draw a chord
to the outer circle, which shall be divided into three equal parts by the

inner one. How is the possibility of the problem limited ?

103. Find a point without a given circle from which if two tan-

gents be drawn to it, they shall contain an angle equal to a given

angle, and shew that the locus of this point is a circle concentric with

the given circle.

104. Draw twro concentric circles such that those chords of the

outer circle which touch the inner, may be equal to its diameter.

105. Find a point in a given straight line from which the tangent

drawn to a given circle, is of given length.

106. If any number of chords be drawn in the inner of two con-

centric circles, from the same point A in its circumference, and each

of the chords be then produced beyond A to the circumference of the

outer circle, the rectangle contained by the whole line so produced
and the part of it produced, shall be constant for all the cases.

X.

107. The circles described on the sides of any triangle as diameters

will intersect in the sides, or sides produced, of the triangle.

108. The circles which are described upon the sides of a right-

angled triangle as diameters, meet the hypotenuse in the sameEpoint;

and the line drawn from the point of intersection to the center of either

of the circles will be a tangent to the other circle.

109. If on the sides of atriangle circular arcsbe described contain-

ing angles whose sum is equal to two right angles, the triangle formed
by the lines joining their centers, has its angles equal to those in the

segments.

110. The perpendiculars let fall from the three angles of any tri-

angle upon the opposite sides, intersect each other in the same point-

Ill. If AD, CE be drawn perpendicular to the sides BC, AB of
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the triangle ABC, prove that the rectangle contained by BC and BD,
is equal to the rectangle contained by BA and BE.

112. The lines which bisect the vertical angles of all triangles on the
same base and with the same vertical angle, all intersect in one point,

113. Of all triangles on the same base and between the same
parallels, the isosceles has the greatest vertical angle.

1 14. It is required within an isosceles triangle to find a point such,

that its distanec from one of the equal angles may be double its dis-

tance from the vertical angle.

115. To find within an acute-angled triangle, a point from which,

if straight lines be drawn to the three angles of the triangle, they shall

make equal angles with each other.

116. A flag-staff of a given height is erected on a tower whose
height is also given : at what point on the horizon will the flag-staff

appear under the greatest possible angle ?

117. A ladder is gradually raised against a wall ; find the locus of

its middle point.

118. The triangle formed by the chord of a circle (produced

or not) , the tangent at its extremity, and any line perpendicular

to the diameter through its other extremity will be isosceles.

119. AD, BE are perpendiculars from the angles A and B
on the opposite sides of a triangle, BE perpendicular to ED or ED
produced; shew that the angle FBD = EBA.

XI.

120. If three equal circles have a common point of intersection,

prove that a straight line joining any two of the points of intersection,

will be perpendicular to the straight line joining the other two points

of intersection.

121. Two equal circles cut one another, and a third circle touches

each of these two equal circles externally: the straight line which joins

the points of section will, if produced, pass through the center of the

third circle.

122. A number of circles touch each other at the same point, and a

straight line is drawn from it cutting them: the straight lines joining
each point of intersection with the center of the circle will be all parallel.

123. If three circles intersect one another, two and two, the three

chords joining the points of intersection shall all pass through one
point.

124. If three circles touch each other externally, and the three

common tangents be drawn, these tangents shall intersect in a point
equidistant from the points of contact of the circles.

125. If two equal circles intersect one another in A. and B, and
from one of the points of intersection as a center, a circle be described
which shall cut both of the equal circles, then will the other point of

intersection, and the two points in which the third circle cuts the
other two on the same side of AB, be in the same straight line.

XII.

126. Given the base, the vertical angle, and the difference of the
sides, to construct the triangle.

I 2
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127. Describe a triangle, having given the vertical^ angle, and

the segments of the base made by a line bisecting the vertical angle.

128. Given the perpendicular height, the vertical angle and the

sum of the sides, to construct the triangle.

129. Construct a triangle in which the vertical angle and the

difference of the two angles at the base shall be respectively equal to

two given angles, and whose base shall be equal to a given straight

line.

130. Given the vertical angle, the difference of the two side.s con-

taining it, and the difference of the segments of the base made by a

perpendicular from the vertex ; construct the triangle.

131. Given the vertical angle, and the lengths of two lines drawn
from the extremities of the base to the points of bisection of the sides,

to construct the triangle.

132. Given the base, and vertical angle, to find the triangle whose

area is a maximum.
133. Given the base, the altitude, and the sum of the two re-

maining sides ; construct the triangle.

134. Describe a triangle of given base, area, and vertical angle.

135. Given the base and vertical angle of a triangle, find the

locus of the intersection of perpendiculars to the sides from the ex-

tremities of the base.

XIII.

136. Shew that the perpendiculars to the sides of a quadrilateral

inscribed in a circle from their middle points intersect in a fixed point.

137. The lines bisecting any angle of a quadrilateral figure in-

scribed in a circle, and the opposite exterior angle, meet in the cir-

cumference of the circle.

138. If two opposite sides of a quadrilateral figure inscribed in a

circle be equal, prove that the other two are parallel.

139. The angles subtended at the center of a circle by any two
opposite sides of a quadrilateral figure circumscribed about it, are

together equal to two right angles.

140. Four circles are described so that each may touch internally

three of the sides of a quadrilateral figure, or one side and the ad-

jacent sides produced ; shew that the centers of these four circles will

all lie in the circumference of a circle.

141. One side of a trapezium capable of being inscribed in a given
circle is given, the sum of the remaining three sides is given ; and also

one of the angles opposite to the given side : construct it.

142. If the sides of a quadrilateral figure inscribed in a circle be
produced to meet, and from each of the points of intersection a

straight line be drawn, touching the circle, the squares of these tan-

gents are together equal to the square of the straight line joining the
points of intersection.

143. If a quadrilateral figure be described about a circle, the
sums of the opposite sides are equal ; and each sum equal to half the

perimeter of the figure.

144. A quadrilateral ABCD is inscribed in a circle, BC and DO
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are produced to meet AB and AB produced in E and F. The angles

ABC and ABC are together equal to AFC, AEB, and twice the

angle BA C.

145. If the hypotenuse AB of a right-angled triangle ABC be

bisected in B, and ^DjP drawn perpendicular to AB, and Di?, BF
cut off each equal to BA, and C-S, CFjoined, prove that the last two

lines will bisect the angle at C and its supplement respectively.

146. ABCB is a quadrilateral figure inscribed in a circle.

Through its angular points tangents are drawn so as to form another

quadrilateral figure FBLCHBEA circumscribed about the circle.

Find the relation which exists between the angles of the exterior and

the angles of the interior figure.

147. The angle contained by the tangents drawn at the extremi-

ties of any chord in a circle is equal to the difference of the angles in

segments made by the chord : and also equal to twice the angle con-

tained by the same chord and a diameter drawn from either of its

extremities.

148. If ABCB be a quadrilateral figure, and the lines AB, AC,
AB be equal, shew that the angle BAB is double of CBB and CBB
together.

149. Shew that the four lines which bisect the interior angles of

a quadrilateral figure, form by their intersections, a quadrilateral figure

which can be inscribed in a circle.

150. In a quadrilateral figure ABCB is inscribed a second
quadrilateral by joining the middle points of its adjacent sides ; a

third is similarly inscribed in the second, and so on. Shew that each
of the series of quadrilaterals will be capable of being inscribed in a

circle if the first three are so. Shew also that two at least of the

opposite sides of ABCB must be equal, and that the two squares upon
these sides are together equal to the sum of the squares upon the

other two.

XIV.

151. If from any point in the diameter of a semicircle, there be
drawn two straight lines to the circumference, one to the bisection of

the circumference, the other at right angles to the diameter, the

squares upon these two lines are together double of the square upon
the semi-diameter.

152. If from any point in the diameter of a circle, straight lines

be drawn to the extremities of a parallel chord, the squares on these

lines are together equal to the squares on the segments into which the
diameter is divided.

153. From a given point without a circle, at a distance from the
circumference of the circle not greater than its diameter, draw a
straight line to the concave circumference which shall be bisected by
the convex circumference.

154. If any two chords be drawn in a circle perpendicular to
each other, the sum of their squares is equal to twice the square of
the diameter diminished by four times the square of the line joining
the center with their point of intersection.
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155. Two points are taken in the diameter of a circle at any
equal distances from the center; through one of these draw any chord,

and join its extremities and the other point. The triangle so formed
has the sum of the squares of its sides invariable.

156. If chords drawn from any fixed point in the circumference

of a circle, be cut by another chord which is parallel to the tangent
at that point, the rectangle contained by each, chord, and the part of

it intercepted between the given point and the given chord, is constant.

157. If AB be a chord of a circle inclined by half a right angle to

the tangent at A, and A C, AD be any two chords equally incline to

AB, AC2 + AD2 = 2.AB2
.

158. A chord POQ cuts the diameter of a circle in Q, in an angle

equal to half a right angle ; P02+OQ2 = 2 (rad.)
2
.

159. Let ACDB be a semicircle whose diameter is AB; and
AD, BC any two chords intersecting in P; prove that

AB2 =DA.AP+CB.BP.
160. If ABDChe any parallelogram, and if a circle be described

passing through the point A, and cutting the sides AB, AC, and the

diagonal AD, in the points F, G, Irrespectively, shew that

AB.AF+AC.AG = AD.AH.
161. Produce a given straight line, so that the rectangle under the

given line, and the whole line produced, may equal the square of the

part produced.
162. If A be a point within a circle, PC the diameter, and through

A, AD be drawn perpendicular to the diameter, and BAE meeting
the circumference in E, then BA.BE=BC.BD.

163. The diameter A CD of a circle, whose center is C, is pro-

duced to P, determine a pointF in the line AP such that the rectangle

PF.PC may be equal to the rectangle PD. PA.
164. To produce a given straight line, so that the rectangle con^

tained by the whole line thus produced, and the part of it produced,
shall be equal to a given square.

165. Two straight lines stand at right angles to each other, one of

which passes through the center of a given circle, and from any point

in the other, tangents are drawn to the circle. Prove that the chord
joining the points of contact cuts the first line in the same point, what-
ever be the point in the second from which the tangents are drawn.

166. A, B, C, D, are four points in order in a straight line, find

a point E between B and C, such that AE.EB = ED.EC, by a

geometrical construction.

167. If any two circles touch each other in the point O, and lines

be drawn through O at right angles to each other, the one line cutting

the circles in P, P'
}
the other in Q, Q! ; and if the line joining the

centers of the circles cut them in A, A' ; then

P'P2 +Q'Q2 = A'A\
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DEFINITIONS.

I.

A RECTILINEAL figure is said to be inscribed in another rectilineal

figure, when all the angular points of the inscribed figure are upon
the sides of the figure in which it is inscribed, each upon each

II.

In like manner, a figure is said to be described about another figure,

when all the sides of the circumscribed figure pass through the angular
points of the figure about which it is described, each through each.

III.

A rectilineal figure is said to be inscribed in a circle, when all the
angular points of the inscribed figure are upon the circumference of

the circle.

IV.

A rectilineal figure is said to be described about a circle, when each

side of the circumscribed figure touches the circumference of the circle.

In like manner, a circle is said to be inscribed in a rectilineal figure,

when the circumference of the circle touches each side of the figure.

VI.

A circle is said to be described about a rectilineal figure, when the
circumference of the circle passes through all the angular points of
the figure about which it is described.
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VII,

A straight line is said to be placed in a circle, when the extremities

of it are in the circumference of the circle.

PROPOSITION I. PROBLEM.

In a given circle to place a straight line, equal to a given straight line

which is not greater than the diameter of the circle.

Let ABC be the given circle, and D the given straight line, not
greater than the diameter of the circle.

It is required to place in the circle ABC a. straight line equal to D.

Draw i?Cthe diameter of the circle ABC.
Then, if i?C is equal to D, the thing required is done;

for in the circle ABC a straight line BC is placed equal to D.
But, if it is not, BC is greater than D

;
(hyp.)

make CJS equal to D, (I. 3.)

and from the center C, at the distance CJS, describe the circle AEF,
and join CA.

Then CA shall be equal to D.
Because C is the center of the circle AEF,
therefore CA is equal to CE : (I. def. 15.)

but CE is equal to D
;

(constr.)

therefore D is equal to CA. (ax. 1.)

Wherefore in the circle ABC, a straight line CA is placed equal to

the given straight line D, which is not greater than the diameter of the

circle, q.e.f.

PEOPOSITION II. PROBLEM.
In a given circle to inscribe a triangle equiangular to a given triangle.

Let ABC he the given circle, and DEF the given triangle.

It is required to inscribe in the circle ABC a triangle equiangular

to the triangle DEF.

l e

Draw the straight line GAHtouching the circle in the point A, (ill. 17.)

and at the point A, in the straight line AH,
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make the angle IIA C equal to the angle DEF; (i. 23.)

and at the point A, in the straight line AG,
make the angle GAB equal to the angle DFE;

and join BC: then ABC shall be the triangle required.

Because HAG touches the circle ABC,
and A C is drawn from the point of contact,

therefore the angle HAC is equal to the angle ABC in the alternate

segment of the circle: (ill. 32.)

but HACis equal to the angle DEF; (constr.)

therefore also the angle ABC is equal to DEF: (ax. 1.)

for the same reason, the angle A CB is equal to the angle DFE :

therefore the remaining angle BAC is equal to the remaining angle
EDF\ (I. 32. and ax. 3.)

wherefore the triangle ABC is equiangular to the triangle DEF,
and it is inscribed in the circle AB C. Q. E. F.

PROPOSITION III. PROBLEM.
About a given circle to describe a triangle equiangular to a given triangle.

Let ABC he the given circle, and DEF the given triangle.

It is required to describe a triangle about the circle ABC equian-

gular to the triangle DEF.

Produce EF both ways to the points G, II
\

find the center K of the circle ABC, (ill. 1.)

and from it draw any straight line KB

;

at the point K in the straight line KB,
make the angle BKA equal to the angle DEG, (i. 23.)

and the angle BKC equal to the angle DFH;
and through the points A, B, C, draw the straight lines LAM, MBN,

NCL, touching the circle ABC. (ill. 17.)

Then LMN shall be the triangle required.

Because ZM, MN, NL touch the circle ABC in the points A,B,
C, to which from the center are drawn KA, KB, KC,
therefore the angles at the points A, B, C are right angles : (in. 18.)

and because the four angles of the quadrilateral figure AMBK are

equal to four right angles,

for it can be divided into two triangles

;

and that two of them KAM, KB3I are right angles,
therefore the other two AKB, AMB are equal to two right angles

:

(ax. 3.)

but the angles DEG, DEF are likewise equsi to tv;o right angles
j

y. 13.)
t 5
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therefore the angles AKB,AMB are equal to the angles DEG, DEF;
(ax. 1.)

of which AKB is equal to DEG; (constr.)

wherefore the remaining angle AMB is equal to the remaining angle

DEF. (ax. 3.)

In like manner, the angle LNM may be demonstrated to be equal

to DFE;
and therefore the remaining angle MLN is equal to the remaining

angle EDF: (i. 32 and ax. 3.)

therefore the triangle LMNh equiangular to the triangle DEF:
and it is described about the circle ABC. Q.E.F.

PROPOSITION IV. PROBLEM.

To inscribe a circle in a given triangle.

Let the given triangle be ABC.
It is required to inscribe a circle in ABC>

Bisect the angles ABC, BCA by the straight lines BD, CD meeting
one another in the point D, (i. 9.)

from which draw DE, DF, DG perpendiculars to AB, BC, CA. (i. 12.)

And because the angle EBD is equal to the angle FBD,
for the angle ABCis bisected by BD,

and that the right angle BED is equal to the right angle BFD
;
(ax. 11.)

therefore the two triangles EBD, FBD have two angles of the one
equal to two angles of the other, each to each

;

and the side BD, which is opposite to one of the equal angles in each,

is common to both
;

therefore their other sides are equal
;

(I. 26.)

wherefore DE is equal to DF:
for the same reason, DG is equal to DF:
therefore DE is equal to DG: (ax. 1.)

therefore the three straight lines DE, DF, DG are equal to one
another

;

and the circle described from the center D, at the distance of any
of them, will pass through the extremities of the other two, and
touch the straight lines AB, BC, CA,

because the angles at the points E, F, G are right angles,

md the straight line which is drawn from the extremity of a diameter

at right angles to it, touches the circle : (ill. 16.)

Iherefore the straight lines AB, BC, CA do each of them touch the

circle,

and therefore the circle EFG is inscribed in the triangle ABC. Q.E.F
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PROPOSITION V. PROBLEM.
To describe a circle about a given triangle.

Let the given triangle be ABC.
It is required to describe a circle about ABC.

A t a

,0M,

Bisect AB, AC in the points D, E, (i. 10.)

and from these points draw DF, EF at right angles to AB, AC) (l. 11.;

JDF, EF produced meet one another

:

for, if they do not meet, they are parallel,

wherefore AB, A C, which are at right angles to them, are parallel

;

which is absurd

:

let them meet in F, and join FA
;

also, if the point F be not in BC, join BF, CF.
Then, because AD is equal to DB, and DF common, and at right

angles to AB,
therefore the base AFis equal to the base FB. (I. 4.)

In like manner, it may be shewn that CF is equal to FA
;

and therefore BF is equal to FC; (ax. 1.)

and FA, FB, FC are equal to one another

:

wherefore the circle described from the center F, at the distance of

one of them, will pass through the extremities of the other two, and
be described about the triangle ABC. Q.e.f.

Cor.—And it is manifest, that when the center of the circle falls

within the triangle, each of its angles is less than a right angle, (ill. 31.)

each of them being in a segment greater than a semicircle; but, when
the center is in one of the sides of the triangle, the angle opposite to

this side, being in a semicircle, (ill. 31.) is a right angle; and, if the

center falls without the triangle, the angle opposite to the side beyond
which it is, being in a segment less than a semicircle, (ill. 31.) is greater

than a right angle : therefore, conversely, if the given triangle ba

acute-angled, the center of the circle falls within it; if it be a right-

angled triangle, the center is in the side opposite to the right angle
;

and if it be an obtuse-angled triangle, the center falls without the tri-

angle, beyond the side opposite to the obtuse angle.

PROPOSITION VI. PROBLEM.
To inscribe a square in a given circle

Let ABCD be the given circle.

It is required to inscribe a square in ABCD.
A
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Draw the diameters, A C, BD, at right angles to one another, (ill. 1.

and I. 11.)

and join AB, BC, CD, DA.
The figure ABCD shall be the square required.

Because BE is equal to ED, for E is the center, and that EA is

common, and at right angles to BD
;

the base BA is equal to the base AD : (I. 4.)

and, for the same reason, BC, CD are each of them equal to BA,
or AD>,

therefore the quadrilateral figure ABCD is equilateral.

It is also rectangular
;

for the straight line BD being the diameter of the circle ABCD,
BAD is a semicircle

;

wherefore the angle BAD is a right angle : (ill. 31.)

for the same reason, each of the angles ABC, BCD, CDA is a right

angle

:

therefore the quadrilateral figure ABCD is rectangular:

and it has been shewn to be equilateral,

therefore it is a square : (i. def. 30.)

and it is inscribed in the circle ABCD. q.e.f.

PROPOSITION VII. PROBLEM.
To describe a square about a given circle.

Let ABCD be the given circle.

It is required to describe a square about it.

G A F

a~\

^
Draw two diameters AC, BD of the circle ABCD, at right angles

to one another,

and through the points A, B, C, D, draw FG, GH, HK, KF touch-

ing the circle, (ill. 17.)

The figure GHKF shall be the square required.

Because FG touches the circle ABCD, and EA is drawn from the

center E to the point of contact A,
therefore the angles at A are right angles : (ill. 18.)

for the same reason, the angles at the points B, C, D are right angles

;

and because the angle AEB is a right angle, as likewise is EBG,
therefore GHis parallel to AC: (I. 28.)

for the same reason AC is parallel to FK:
and in like manner GF, HK may each of them be demonstrated to

be parallel to BED

:

therefore the figures GK, GC, AK, FQ.BK are parallelograms;
and therefore GF is equal to HK, and GH to FK: (I. 34.)

and because A C is equal to BD, and that A C is equal to each of the1

two GH, FK;
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and BD to each of the two GF, HK:
GH, FK are each of them equal to GF, or HK

;

therefore the quadrilateral figure FGHK is equilateral.

It is also rectangular

;

for GBEA being a parallelogram, and AEB a right angle,

therefore A GB is likewise a right angle : (i. 34.)

and in the same manner it may be shewn that the angles at H, K, F}

are right angles :

therefore the quadrilateral figure FGHK is rectangular :

and it was demonstrated to be equilateral

;

therefore it is a square
;

(i. def. 30.)

and it is described about the circle ABCD. q.e.f.

PROPOSITION VIII. PROBLEM.

To inscribe a circle in a given square.

Let ABCD be the given square.

It is required to inscribe a circle in ABCD.

K>

Bisect each of the sides AB, AD in the points F, E, (i. 10.)

and through E draw EH parallel to AB or DC, (I. 31.)

and through F draw FK parallel to AD or BC:
therefore each of the figures AK, KB, AH, IID, AG,GC,BG, GD

is a right-angled parallelogram

;

and their opposite sides are equal : (I. 34.)

and because AD is equal to AB, (i. def. 30.)

and that AE is the half of AD, and AF the half of AB,
therefore AE is equal to AF; (ax. 7.)

wherefore the sides opposite to these are equal, viz. FG to GE

:

in the same manner it may be demonstrated that GH, GK are each
of them equal to FG or GE

:

therefore the four straight lines GE, GF, GH, GK are equal to one
another

;

and the circle described from the center G at the distance of one of

them, will pass through the extremities of the other three, and touch
the straight lines AB, BC, CD, DA

;

because the angles at the points E, F, H, K, are right angles, (i. 29.)

and that the straight line which is drawn from the extremity of a

diameter, at right angles to it, touches the circle : (ill. 16. Cor.)

therefore each ofthe straight lines AB, BC, CD, DA touches the circle,

whi«h therefore is inscribed in the square ABCD. Q.E.F.
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PROPOSITION IX. PROBLEM.
To describe a circle about a given square.

Let ABCD be the given square.

It is required to describe a circle about ABCD.
A^-—„ D

Join A C, BD, cutting one another in E

:

and because DA is equal to AB, and A C common to the triangles

I)A C, JBA C, (I. def. 30.)

the two sides DA, A C are equal to the two JBA, A C, each to each
;

and the base DC is equal to the base BC;
wherefore the angle DACis equal to the angle BAC; (I. 8.)

and the angle DAB is bisected by the straight line AC:
in the same manner it may be demonstrated that the angles ABC
BCD, CDA are severally bisected by the straight lines BD, AC:

therefore, because the angle DAB is equal to the angle ABC.
(I. def. 30.)

and that the angleDAB is the half ofDAB, andDBA the half ofAB C;
therefore the angle DAB is equal to the angle DBA

;
(ax. 7.)

wherefore the side DA is equal to the side DB : (i. 6.)

in the same manner it may be demonstrated, that the straight lines

DC, DD are each of them equal to DA or DB

:

therefore the four straight lines DA, DB, DC, DD are equal to one

another

;

and the circle described from the center D, at the distance of one
of them, will pass through the extremities of the other three, and be

described about the square ABCD. q.e.f.

PROPOSITION X. PROBLEM.
To describe an isosceles triangle, having each of the angles at the base

double of the third angle.

Take any straight line AB, and divide it in the point C, (n. 11.)

so that the rectangle AB, BC may be equal to the square on CA
;

and from the center A, at the distance AB, describe the circle BDE,
in which place the straight line BD equal to AC, which is not greater

than the diameter of the circle BDD; (iv. 1.)

and join DA.
Then the triangle ABD shall be such as is required,

that is, each of the angles ABD,ADB shall be double of the angle

BAD.
Join DC, and about the triangle ^4DC describe the circle ACD. (iv. 5.)

And because the rectangle AB,BCis equal to the square on AC,
and that AC is, equal to BD, (constr.)

the rectangle AB, BC is equal to the square on BD: (ax. 1.)

and because from the point B, without the circle A CD, two straight

lines BCA, BD are drawn to the circumference, one of which cuts, and
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the other meets the circle, and that the rectangle AB, BC, contained

by the whole of the cutting line, and the part of it without the circle,

is equal to the square on BD which meets it
;

therefore the straight line BD touches the circle ACD : (ill. 37.)

and because BD touches the circle, and DC is drawn from the

point of contact D,
the angle BDC is equal to the angle DAC in the alternate segment

of the circle : (in. 32.)

to each of these add the angle CDA
;

therefore the whole angle BDA is equal to the two angles CDA,
DAC: (ax. 2.)

but the exterior angle BCD is equal to the angles CDA, DA C; (1. 32.)

therefore also BDA is equal to BCD : (ax. 1.)

but BDA is equal to the angle CBD, (i. 5.)

because the side AD is equal to the side AB

;

therefore CBD, or DBA, is equal to BCD; (ax. 1.)

and consequently the three angles BDA, DBA, BCD are equal to

one another

:

and because the angle DBCis equal to the angle BCD,
the side BD is equal to the side DC: (i. 6.)

but BD was made equal to CA
;

therefore also CA is equal to CD, (ax. 1.)

and the angle CDA equal to the angle DAC; (I. 5.)

therefore the angles CDA, DA C together, are double of the angle

DAC:
but BCD is equal to the angles CDA, DAC; (i. 32.)

therefore also BCD is double of DA C

:

and BCD was proved to be equal to each of the angles BDA, DBA ;

therefore each of the angles BDA, DBA is double of the angle DAB.
Wherefore an isosceles triangle ABD has been described, having

each of the angles at the base double of the third angle. Q.E.F.

PROPOSITION XI. PROBLEM.
To inscribe an equilateral and equiangular pentagon in a given circle.

Let ABCDE be the given circle.

It is required to inscribe an equilateral and equiangular pentagon
in the circle ABCDF.

Describe an isosceles triangle FGH, having each of the angles at

G, H double of the angle at F; (iv. 10.)

and in the circle ABCDE inscribe the triangle ACD equiangular
to the triangle FGH, (iv. 2.)

so that the angle s>CAD may be equal to the angle at F,
and each of the angles A CD, CDA equal to the angle at G or H\
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wherefore each of the angles A CD, CDA is double of the angle CAD.
Bisect the angles A CD, CDA by the straight lines CE,DB; (i 9.)

and join AB, BC, DE, EA.

A
Then ABCDE shall be the pentagon required.

Because each of the angles A CD, CDA is double of CAD,
and that they are bisected by the straight lines CE, DB

;

therefore the five angles DAC, ACE, ECD, CDB, BDA are

equal to one another

:

but equal angles stand upon equal circumferences
;

(ill. 26.)

therefore the five circumferences AB,BC, CD, DE, EA are equal

to one another

:

and equal circumferences are subtended by equal straight lines
;
(ill. 29.)

therefore the five straight lines AB, B C, CD, DE, EA are equal

to one another.

Wherefore the pentagon ABCDE is equilateral.

It is also equiangular

:

for, because the circumference AB is equal to the circumference DE,
if to each be added BCD,

the whole ABCD is equal to the whole EDCB : (ax. 2.)

but the angle AED stands on the circumference ABCD
;

and the angle BAE on the circumference EDCB
;

therefore the angle BAE is equal to the angle AED : (ill. 27.)

for the same reason, each of the angles ABC, BCD, CDE ia equal

to the angle BAE, or AED :

therefore the pentagon ABCDE is equiangular

;

and it has been shewn that it is equilateral

:

wherefore, in the given circle, an equilateral and equiangular pentagon
has been described, q.e.f.

PROPOSITION XII. PROBLEM.

To describe an equilateral and equiangular pentagon about a given circle.

Let ABCDE be the given circle.

It is required to describe an equilateral and equiangular pentagon
about the circle ABCDE.

Let the angular points of a pentagon, inscribed in the circle, by the
last proposition, be in the points A, B, C, D, E,
so that the circumferences AB,BC, CD, DE, EA are equal

;
(IV. 11.)

and through the points A, B, C, D, E draw GET, ELK, XL, LM,
MG touching the circle; (HI. 17.)

the figure GHKLM shall be the pentagon required.
Take the center F, and join FB, FK, FC, FL, FD.

And because the straight line KL touches the circle ABCDE in

the point C, to which FC is drawn from the center F,
FC is perpendicular to KL, (ill. ? 8.)
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therefore each of the angles at C is a right angle

:

for the same reason, the angles at the points B, D are right angles

:

G

k c L

and because FCK is a right angle,

the square on FK is equal to the squares on FC, CK: (i. 47.)

for the same reason, the square on FK is equal to the squares on
FB, BK:

therefore the squares on FC, CK are equal to the squares on FB,
BK; (ax. 1.)

of which the square on FC is equal to the square on FB
;

therefore the remaining square on CK is equal to the remaining square
on BK, (ax. 3.) and the straight line CK equal to BK :

and because FB is equal to FC, and FK common to the triangles

BFK, CFK,
the two BF, FK are equal to the two CF, FK, each to each

:

and the base BK was proved equal to the base KC:
therefore the angle BFK is equal to the angle KFC, (i. 8.)

and the angle BKF to FKC: (i. 4.)

wherefore the angle BFC is double of the angle KFC,
and BKC double of FKC:

for the same reason, the angle CFD is double of the angle CFL,
and CLD double of CLF:

and because the circumference BC is equal to the circumference CD,
the angle BFC is equal to the angle CFD

;
(in. 27.)

and BFC is double of the angle KFC,
and CFD double of CFL;

therefore the angle KFC is equal to the angle CFL: (ax. 7.)

and the right angle FCK is equal to the right angle FCL

;

therefore, in the two triangles FKC, FLC, there are two angles of the

one equal to two angles of the other, each to each

;

and the side FC which is adjacent to the equal angles in each, is com-
mon to both

;

therefore the other sides are equal to the other sides, and the third

angle to the third angle : (I. 26.)

therefore the straight line KC is equal to CL, and the angle FKC
to the angle FLC:

and because KC is equal to CL,
KL is double of KC.

In the same manner it may be shewn that UK is double ofBK :

and because BK is equal to KC, as was demonstrated,
and that KL is double of KC, and UK double of BK,

therefore UK is equal to KL : (ax. 6.)

in like manner it may be shewn that GH, GM, ML are each of tnem
equal to UK, or KL

:
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therefore the pentagon GHKLM is equilateral.

It is also equiangular :

for, since the angle FKC is equal to the angle FL C,

and that the angle HKL is double of the angle FKC,
and KLM double of FLC, as was before demonstrated;
therefore the angle HKL is equal to KLM: (ax. 6.)

and in like manner it may be shewn,
that each of the angles KHG, HGM, GML is equal to the angle

HKL or KLM:
therefore the five angles GHK, HKL, KLM, LMG, MGH being

equal to one another,

the pentagon GHKLM is equiangular:
and it is equilateral, as was demonstrated;

and it is described about the circle ABODE. Q.E.F.

PROPOSITION XIII. PROBLEM.
To inscribe a circle in a given equilateral and equiangular pentagon.

Let ABODE be the given equilateral and equiangular pentagon.

It is required to inscribe a circle in the pentagon ABODE.
A

Bisect the angles BCD, ODE by the straight lines OF, DF, (i. 9.)

and from the point F, in which they meet, draw the straight lines FB,
FA,FE:

therefore since BC is equal to CD, (hyp.)

and OF common to the triangles BCF, DCF,
the two sides BC, OF are equal to the two DC, OF, each to each

;

and the angle BCFis equal to the angle DCF; (constr.)

therefore the base BF is equal to the base FD, (i. 4.)

and the other angles to the other angles, to which the equal sides are

opposite

:

therefore the angle CBF is equal to the angle CDF:
and because the angle ODE is double of CDF,

and that ODE is equal to CBA, and CDF to CBF;
CBA is also double of the angle CBF;

therefore the angle ABF is equal to the angle CBF:
wherefore the angle ABC is bisected by the straight line BF:

in the same manner it may be demonstrated,

that the angles BAE,AED, are bisected by the straight lines AF, FE.
From the point F, draw FG, FH, FK, FL, FM perpendiculars to

the straight lines AB, BC, CD, DE, EA : (i. 12.)

and because the angle HCF is equal to KCF, and the right angle

FHC equal to the right angle FKC;
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therefore in the triangles FHC, FKC, there are two angles of the one

equal to two angles of the other, each to each
;

and the side FC, which is opposite to one of the equal angles in each,

is common to both

;

therefore the other sides are equal, each to each
;

(i. 26.)

wherefore the perpendicular FH is equal to the perpendicular FK:
in the same manner it may be demonstrated, that FL, FM, FG are

each of them equal to FIT, or FK

:

therefore the five straight lines FG, FH, FK, FL, FM are equal

to one another

:

wherefore the circle described from the center F, at the distance of

one of these five, will pass through the extremities of the other four,

and touch the straight lines AB, BC, CD, DE, FA,
because the angles at the points G, H, K, L, 31 are right angles,

and that a straight line drawn from the extremity of the diameter of

a circle at right angles to it, touches the circle
;

(ill. 16.)

therefore each of the straight lines AB, BC, CD, DE, EA touches

the circle

:

wherefore it is inscribed in the pentagon ABCDE. Q.E.F.

PROPOSITION XIY. PROBLEM.
To describe a circle about a given equilateral and equiangular pentagon.

Let ABCDE be the given equilateral and equiangular pentagon.

It is required to describe a circle about ABCDE.

Bisect the angles BCD, CDE by the straight lines CF, FD, (r. 9.)

and from the point F, in which they meet, draw the straight lines FB.
FA, FE, to the points B, A, E.

It may be demonstrated, in the same manner as the preceding pro-

position,

that the angles CBA, BAE, AED are bisected by the straight lines

FB, FA, FE.
And because the angle BCD is equal to the angle CDE.

and that FCD is the half of the angle BCD,
and CDF the half of CDE ;

therefore the angle FCD is equal to FDC; (ax. 7.)

wherefore the side CF is equal to the side FD: (i. 6.)

in like manner it may be demonstrated,
that FB, FA, FE, are each of them equal to FC or FD

:

therefore the five straight lines FA, FB, FC, FD, FE, are equal to

one another

;

and the circle described from the center F, at the distance of one of

them, will pass through the extremities of the other four, and be de-
scribed about the equilateral and eauiangular pentagon ABCDE,
Q.E.F.
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PROPOSITION XV. PROBLEM.
To inscribe an equilateral and equiangular hexagon in a given circle.

Let ABCDEFhe the given circle.

It is required to inscribe an equilateral and equiangular hexagon in it.

A

Find the center G of the circle ABCDEF,
and draw the diameter AGD

;
(ill. 1.)

and from D, as a center, at the distance D G, describe the circle EGCH,
join EG, CG, and produce them to the points B, F\

and join AB, BC, CD, BE, EF, FA :

the hexagon ABCDEF shall be equilateral and equiangular.

Because G is the center of the circle ABCDEF,
GE is equal to GD

:

and because D is the center of the circle EGCH,
DE is equal to EG:

wherefore GE is equal to ED, (ax. 1.)

and the triangle EGD is equilateral

;

and therefore its three angles EGD, GDE, DEG, are equal to one
another: (i. 5. Cor.)

but the three angles of a triangle are equal to two right angles
;
(I. 32.)

therefore the angle EGD is the third part of two right angles

:

in the same manner it may be demonstrated,

that the angle DGC is also the third part of two right angles

:

and because the straight line GC makes with EB the adjacent angles

EGC, CGB equal to two right angles
;

(i. 13.)

the remaining angle CGB is the third part of two right angles:

therefore the angles EGD, DGC, CGB are equal to one another:

and to these are equal the vertical opposite angles BGA, A GF, FGE :

(I. 15.)

therefore the six angles EGD, DGC, CGB, BGA, AGF, FGE,
are equal to one another :

but equal angles stand upon equal circumferences
;

(in. 26.)

therefore the six circumferences AB, BC, CD, DE, EF, FA are equal

to one another

:

and equal circumferences are subtended by equal straight lines:

(ill. 29.)

therefore the six straight lines are equal to one another,

and the hexagon ABCDEF is equilateral.

It is also equiangular

:

for, since the circumference AF is equal to ED,
to each of these equals add the circumference ABCD ;

therefore the whole circumference FABCD is equal to the whole
EDCBA:
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and the angle FED stands upon the circumference FAB CD,
and the angle AFE upon EDCBA

;

therefore the angle AFE is equal to FED : (in. 27.)

in the same manner it may be demonstrated,
that the other angles of the hexagon ABCDEF are each of them

equal to the angle AFE or FED : therefore the hexagon is equi-
angular ; and it is equilateral, as was shewn

;

and it is inscribed in the given circle ABCDEF. q.e.f.

Cor.—From this it is manifest, that the side of the hexagon is

equal to the straight line from the center, that is, to the semi-diameter
of the circle.

And if through the points A, B, C, D, E, F there be drawn straight

lines touching the circle, an equilateral and equiangular hexagon will

be described about it, which may be demonstrated from what has been
said of the pentagon: and likewise a circle maybe inscribed in a given
equilateral and equiangular hexagon, and circumscribed about it, by a
method like to that used for the pentagon.

PROPOSITION XVI. PROBLEM.
To inscribe an equilateral and equiangular quindecagon in a given circle.

Let ABCD be the given circle.

It is required to inscribe an equilateral and equiangular quindeca-
gon in the circle ABCD.

A

LetACbe thesideof an equilateral triangle inscribed in the circle, (iv.2.)

and AB the side of an equilateral and equiangular pentagon inscribed

in the same; (IV. 11.)

therefore, of such equal parts as the whole circumference ABCDF
contains fifteen,

the circumference ABC, being the third part of the whole, contains five

;

and the circumference AB, which is the fifth part of the whole, con-

tains three

;

therefore BC, their difference, contains two of the same parts:

bisect BC in E; (ill. 30.)

therefore BE, EC are, each of them, the fifteenth part of the whole
circumference ABCD :

therefore if the straight lines BE, EC be drawn, and straight lines

equal to them be placed round in the whole circle, (IV. 1.) an equi-

lateral and equiangular quindecagon will be inscribed in it. Q.E.F.

And in the same manner as was done in the pentagon, if through
the points of division made by inscribing the quindecagon, straight

lines be drawn touching the circle, an equilateral and equiangular
quindecagon will be described about it : and likewise, as in the pen-
tagon, a circle may be inscribed in a given equilateral and equiangular
quindecagon, and circumscribed about it.

i
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The Fourth. Book, of the Elements contains some particular cases of

four general problems on the inscription and the circumscription of tri-

angles and regular figures in and about circles. Euclid has not given
any instance of the inscription or circumscription of rectilineal figures

in and about other rectilineal figures.

Any rectilineal figure, of five sides and angles, is called a pentagon
;

of seven sides and angles, a heptagon ; of eight sides and angles, an octa-

gon ; of nine sides and angles, a nonagon ; of ten sides and angles, a

decagon ; of eleven sides and angles, an undecagon ; of twelve sides and
angles, a duodecagon ; of fifteen sides and angles, a quindecagon, &c.

These figures are included under the general name of polygons ; and
are called equilateral, when their sides are equal ; and equiangular, when
their angles are equal ; also when both their sides and angles are equal,

they are called regular polygons.

Prop. in. An objection has been raised to the construction of this

problem. It is said that in this and other instances of a similar kind,

the lines which touch the circle at A, B, and C, should be proved to meet
one another. This may be done by joining AB, and then since the angles

KAM, KBM are equal to two right angles (in. 18.), therefore the angles

BAM, ABM are less than two right angles, and consequently (ax. 12.),

AM and .BITmust meet one another, when produced far enough. Similarly,

it may be shewn that AL and CL, as also CN and BN meet one another.

Prop. v. is the same as "To describe a circle passing through three

given points, provided that they are not in the same straight line."

The corollary to this proposition appears to have been already de-

monstrated in Prop. 31. Book in.

It is obvious that the square described about a circle is equal to

double the square inscribed in the same circle. Also that the circum-
scribed square is equal to the square on the diameter, or four times the

square on the radius of the circle.

Prop. vn. It is manifest that a square is the only right-angled paral-

lelogram which can be circumscribed about a circle, but that both a
rectangle and a square may be inscribed in a circle.

Prop. x. By means of this proposition, a right angle may be divided
into five equal parts.

Reference has already been made to the distinction between analysis

and synthesis, and that all Euclid's direct demonstrations are synthetic,

properly so called. There is however a single exception in Prop. 16.

Book iv, where the analysis only is given of the Problem. The two
methods are so connected in ail processes of reasoning, that it is very
difficult to separate one from the other, and to assert that this process is

really synthetic, and that is really analytic. In every operation performed
in the construction of a problem, there must be in the mind a knowledge
of some properties of the figure which suggest the steps to be taken in

the construction of it. Let any Problem be selected from Euclid, and at

each step of the operation, let the question be asked, "Why that step

is taken ?" It will be found that it is because of some known property
of the required figure. As an example will make the subject more clear

to the learner, the Analysis of Euc. iv. 10, is taken from the "Analysis of

Problems'' in the larger edition of the Euclid, and to which the learner
is referred for more complete information.

In Euc. iv. 10, there are five operations specified in the construc-
tion :—

(1) Take any straight line AB.
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(2) Divide the line AB in C, so that the rectangle AB, BC, may be
equal to the square on AC.

(3) Describe the circle BDE with center A and radius AB.
(4) Place the line BD in that circle, equal to the line AC.
(5) Join the points A, D.
Why should either of these operations be performed rather than any

others ? And what will enable us to foresee that the result of them will

be such a triangle as was required ? The demonstration affixed to it by
Euclid does undoubtedly prove that these operations must, in conjunction,

produce such a triangle : but we are furnished in the Elements with no
obvious reason for the adoption of these steps, unless we suppose them
accidental. To suppose that all the constructions, even the simpler ones,

are the result of accident only, would be supposing more than could be
shewn to be admissible. No construction of the problem could have
been devised without a previous knowledge of some of the properties of

the figure. In fact, in directing the figure to be constructed, we assume
the possibility of its existence ; and we study the properties of such a

figure on the hypothesis of its actual existence. It is this study of the
properties of the figure that constitutes the Analysis of the problem.

Let then the existence of a triangle BAD be admitted, which has each
of the angles ABB, ABB double of the angle BAD, in order to ascertain

any properties it may possess which would assist in the construction of

such a triangle.

Then, since the angle ADB is double of BAD, if we draw a line DC
to bisect ADB and meet AB in C, the angle ADC will be equal to CAD

;

and hence (Euc. I. 6.) the sides AC, CD are equal to one another.
Again, since Ave have three points A, C, D, not in the same straight

line, let us examine the effect of describing a circle through them : that
is describe the circle ACD about the triangle A CD. (Euc. iv. 5.)

Then, since the angle ADB has been bisected by DC, and since ADB
is double of DAB, the angle CDB is equal to the angle DAC in the alter-

nate segment of the circle ; the line BD therefore coincides with a tangent
to the circle at D. (Converse of Euc. in. 32.)

Whence it follows, that the rectangle contained by AB, BC, is equal
to the square on BD. (Euc. in. 36.)

But the angle BCD is equal to the two interior opposite angles CAD,
CDA; or since these are equal to each another, BCD is the double of

CAD, that is, of BAD. And since ABD is also double of BAD, by the
conditions of the triangle, the angles BCD, CBD are equal, and BD is

equal to DC, that is, to AC.
It has been proved that the rectangle AB, BC, is equal to the square

on BD ; and hence the point C in AB, found by the intersection of the
bisecting line DC, is such, that the rectangle AB, BC is equal to the
6quare on AC. (Euc. n. 11.)

Finally, since the triangle ABD is isosceles, having each of the angles
ABD, ADB double of the same angle, the sides AB, AD are equal, and
hence the points B, D, are in the circumference of the circle described
about A with the radius AB. And since the magnitude of the triangle
is.not specified, the line AB may be of any length whatever.

From this ** Analysis of the problem," which obviously is nothing
more than an examination of the properties of such a figure supposed to
exist already, it will be at once apparent, why those steps which are
prescribed by Euclid for its construction, were adopted.

The line AB is taken of any length, because the problem does not
prescribe any specific magnitude to any of the sides of the triangle.
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The circle BDE is described about A with, the distance AB, because

the triangle is to be isosceles, having AB for one side, and therefore the
other extremity of the base is in the circumference of that circle.

The line AB is divided in C, so that the rectangle AB, BC shall be
equal to the square on AC, because the base of the triangle must be equal
to the segment AC.

And the line AB is drawn, became it completes the triangle, two of

whose sides, AB, BD are already drawn.
Whenever we have reduced the construction to depend upon problems

which have been already constructed, our analysis may be terminated t

as was the case where, in the preceding example, we arrived at the
division of the line AB in C ; this problem having been already con-
structed as the eleventh of the second book.

Prop. xvi. The arc subtending a side of the quindecagon, may be
found by placing in the circle from the same point, two lines respectively

equal to the sides of the regular hexagon and pentagon.
The centers of the inscribed and circumscribed circles of any regular

polygon are coincident.

Besides the circumscription and inscription of triangles and regular
polygons about and in circles, some very important problems are solved
in the constructions respecting the division of the circumferences of

circles into equal parts.

By inscribing an equilateral triangle, a square, a pentagon, a hex-
agon, &c. in a circle, the circumference is divided into three, four, five,

six, &c. equal parts. In Prop. 26, Book in, it has been shewn that equal
angles at the centers of equal circles, and therefore at the center of the

same circle, subtend equal arcs ; by bisecting the angles at the center,

the arcs which are subtended by them are also bisected, and hence, a

sixth, eighth, tenth, twelfth, &c. part of the circumference of a circle

may be found.
If the right angle be considered as divided into 90 degrees, each degree

into 60 minutes, and each minute into 60 seconds, and so on, according

to the sexagesimal division of a degree ; by the aid of the first corollary

to Prop. 32, Book i, maybe found the numerical magnitude of an interior

angle of any regular polygon whatever.
Let denote the magnitude of one of the interior angles of a regular

polygon of n sides,

then nd is the sum of all the interior angles.

But all the interior angles of any rectilineal figure together with four

right angles, are equal to twice as many right angles as the figure has sides,

that is, if it be assumed to designate two right angles,

". 7ld -f 2tT = W7T,

and nd = wr — 2tt = (n — 2) . ir,

n

the magnitude of an interior angle of a regular polygon of n sides.

By taking n = 3, 4, 5, 6, &c. may be found the magnitude in terms of

two right angles, of an interior angle of any regular polygon whatever.

Pythagoras was the first, as Proclus informs us in his commentary,
who discovered that a multiple of the angles of three regular figures only,

namely, the trigon, the square, and the hexagon, can fill up space round
a point in a plane.

It has been shewn that the interior angle of any regular poh gon of n
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sides in terms of two right angles, is expressed by the equation

Let 03 denote the magnitude of the interior angle of a regular figure

of three sides, in which case, n = 3.

Then 0s = —-— .tt = -- = one third of two right angles,
o 3

.'. 303 = 7T,

and 603 = 2ir,

that is, six angles, each equal to the interior angle of an equilateral tri-

angle, are equal to four right angles, and therefore six equilateral triangles

may be placed so as completely to fill up the space round the point at

which they meet in a plane.

In a similar way, it may be shewn that four squares and three hexagons
may be placed so as completely to fill up the space round a point.

Also it will appear from the results deduced, that no other regular

figures besides these three, can be made to fill up the space round a point;

for any multiple of the interior angles of any other regular polygon, will

be found to be in excess above, or in defect from four right angles.

The equilateral triangle or trigon, the square or tetragon, the penta-
gon, and the hexagon, were the only regular polygons known to the
Greeks, capable of being inscribed in circles, besides those which may
be derived from them.

M. Gauss in his Disquisitiones Arithmeticse, has extended the number
by shewing that in general, a regular polygon of 2n + 1 sides is capable
of being inscribed in a circle by means of straight lines and circles, in

those cases in which 2n + 1 is a prime number.
The case in which n = 4, in 2" -f 1, was proposed by Mr. Lowry ofthe

Royal Military College, to be answered in the seventeenth number of

Leybourn's Mathematical Repository, in the following form :
—

Required a geometrical demonstration of the following method of

constructing a regular polygon of seventeen sides in a circle.

Draw the radius CO at right angles to the diameter AB ; on OC and
OB, take OQ equal to the half, and OD equal to the eighth part of the
radius ; make BE and DF each equal to DQ, and EG andFH respectively

equal to EQ and FQ; take OK a mean proportional between OH and
OQ, and through K, draw KM parallel to AB, meeting the semicircle

described on OG in M, draw MN parallel to OC cutting the given circle

in N, the arc AN is the seventeenth part of the whole circumference.
A demonstration of the truth of this construction has been given by

Mr. Lowry himself, and will be found in the fourth volume ofLeybourn's
Repository. The demonstration including the two lemmas occupies
more than eight pages, and is by no means of an elementary character.

QUESTIONS ON BOOK IY.

1. Wh at is the general object of the Fourth Book of Euclid?
2. What consideration renders necessary the first proposition of the

Fourth Book of Euclid ?

3. When is a circle said to be inscribed within, and circumscribed

about a rectilineal figure ?
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4. When is one rectilineal figure said to be inscribed in, and circum-
scribed about another rectilineal figure ?

5. Modify the construction of Euc. rv. 4, so that the circle may
*ouch one side of the triangle and the other two sides produced.

6. The sides of a triangle are 5, 6, 7 units respectively, find the radii

«£ the inscribed and circumscribed circle.

7. Give the constructions by which the centers of circles described

ttboijfc,, and inscribed in triangles are found. In what triangles will they
roincide?

8. How is it shewn that the radius of the circle inscribed in an
^uiiateral triangle is half the radius described about the same triangle ?

9. The equilateral triangle inscribed in a circle is one-fourth of the
equilateral triangle circumscribed about the same circle.

10. What relation subsists between the square inscribed in, and the
zquare circumscribed about the same circle ?

1 1

.

Enunciate Euc. in. 22 : and extend this property to any inscribed

polygon having an even number of sides.

12. Trisect a quadrantal arc of a circle, and show that every arc

<vftich is an— th part of a quadrantal arc may be trisected geometrically:

m and n being whole numbers:
13. If one side of a quadrilateral figure inscribed in a circle be pro-

duced, the exterior angle is equal to the interior and opposite angle of the

figure. Is this property true of any inscribed polygon having an even
number of sides ?

14. In what parallelograms can circles be inscribed ?

15. Give the analysis and synthesis of the problem : to describe

an isosceles triangle, having each of the angles at the base double of

the third angle ?

16. Shew that in the figure Euc. iv. 10, there are two triangles pos-
sessing the required property.

17. How is it made to appear that the line BD is the side of a regular
|

decagon inscribed in the larger circle, and the side of a regular pentagon i

inscribed in the smaller circle 5 fig. Euc. iv. 10.

18. In the construction of Euc. iv. 3, Euclid has omitted to shew;
that the tangents drawn through the points A and B will meet in some
point M. How may this be shewn ?

19. Shew that if the points of intersection of the circles in Euclid's;

figure, Book iv. Prop. 10, be joined with the vertex of the triangle and i

with each other, another triangle will be formed equiangular and equal
to the former.

20. Divide a right angle into five equal parts. How may an isosceles

triangle be described upon a given base, having each angle at the base
one-third of the angle at the vertex ?

21. What regular figures may be inscribed in a circle by the help of

Euc. iv. 10 ?

22. What is Euclid's definition of a regular pentagon ? Would the
stellated figure, which is formed by joining the alternate angles of a:

regular pentagon, as described in the Fourth Book, satisfy this definition ?

23. Shew that each of the interior angles of a regular pentagon in-

scribed in a circle, is equal to three-fifths of two right angles.

24. If two sides not adjacent, of a regular pentagon, be produced to

meet : what is the magnitude of the angle contained at the point where
they meet i

25. Is there any method more direct than Euclid's for inscribing
a regular pentagon in a circle ?
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26. In what sense is a regular hexagon also a parallelogram? Would
the same observation apply to all regular figures with an even number of

sides ?

27. Why has Euclid not shewn how to inscribe an equilateral triangla

in a circle, before he requires the use of it in Prop. 16, Book iv. ?

28. An equilateral triangle is inscribed in a circle by joining the first,

third, and ftfth angles of the inscribed hexagon.
29. If the sides of a hexagon be produced to meet, the angles formed

by these lines will be equal to four right angles.

30. Shew that the area of an equilateral triangle inscribed in a circle

is one-half of a regular hexagon inscribed in the same circle.

31. If a side of an equilateral triangle be six inches : what is the
radius of the inscribed circle ?

32. Find the area of a regular hexagon inscribed in a circle whose
diameter is twelve inches, What is the difference between the inscribed

and the circumscribed hexagon ?

33. Which is the greater, the difference between the side of the square
and the side of the regular hexagon inscribed in a circle whose radius is

unity ; or the difference between the side of the equilateral triangle and
the side of the regular pentagon inscribed in the same circle ?

34. The regular hexagon inscribed in a circle, is three-fourths of the
regular circumscribed hexagon.

35. Are the interior angles of an octagon equal to twelve right angles?

36. What figure is formed by the production of the alternate sides of

a regular octagon ?

37. How many square inches are in the area of a regular octagon
whose side is eight inches ?

38. If an irregular octagon be capable of having a circle described
about it, shew that the sums of the angles taken alternately are equal.

39. Find an algebraical formula for the number of degrees contained
by an interior angle of a regular polygon of h sides.

40. What are the three regular figures which can be used in paving
a plane area ? Shew that no other regular figures but these will fill up
the space round a point in a plane.

41. Into what number of equal parts may a right angle be divided
geometrically ? What connection has the solution of this problem with
;he possibility of inscribing regular figures in circles ?

42. Assuming the demonstrations in Euc. iv, shew that any equila-

teral figure of 3.2", 4.2", 5.2", or 15. 2
n

sides may be inscribed in a

circle, when n is any of the numbers, 0, 1, 2, 3, &c.
43. With a pair of compasses only, shew how to divide the circum-

ference of a given circle into twenty-four equal parts.

44. Shew that if any polygon inscribed in a circle be equilateral, it

jnust also be equiangular. Is the converse true ?

45. Shew that if the circumference of a circle pass through three
angular points of a regular polygon, it will pass through all of them.

46. Similar polygons are always equiangular : is the converse of this

noposition true ?

47. What are the limits to the Geometrical inscription of regular
figures in circles ? What does Geometrical mean when used in this way?

48. What is the difficulty of inscribing geometrically an equilateral
and equiangular undecagon in a circle ? Why is the solution of this pro-
olem said to be beyond the limits ofplane geometry ? Why is it so difficult

to prove that the geometrical solution of such problems is impossible ?

&2
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PROPOSITION I. THEOREM.
circle, the square on the side

adius, or on the side of the

If an equilateral triangle be inscribed in a

of the triangle is triple of the square on the

regular hexagon inscribed in the same circle.

Let ABB be an equilateral triangle inscribed in the circle ABB
of which the center is C.

Join BC, and produce BC to meet the circumference in E, also

join AE.
And because ABB is an equilateral triangle inscribed in the circle

;

therefore AEB is one-third of the whole circumference,

and therefore AE is one-sixth of the circumference,

and consequently, the straight line AE is the side of a regular hexagon
(IV. 15.), and is equal to EC.

And because BE is double of EC or AE,
therefore the square on BE is quadruple of the square on AE,
but the square on BE is equal to the squares on AB, AE

;

therefore the squares on AB, AE are quadruple of the square on AE,
and taking from these equals the square on AE,

therefore the square on AB is triple of the square on AE.

PROPOSITION II. PROBLEM.
To describe a circle which shall touch a straight line given in position, and

pass through two given points.

Analysis. Let AB be the given straight line, and C, B the two
given points.

Suppose the circle required which passes through the points C, B
to touch the line AB in the point E.

A E F B

Join C, B, and produce BC to meet AB in F,
and let the circle be described having the center L,

join also LE, and draw LH perpendicular to CD.
Then CB is bisected in H, and LE is perpendicular to AB,
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Also, since from the point F without the circle, are drawn two
straight lines, one of which FE touches the circle, and the other FJDC
cuts it; the rectangle contained by FC, FD, is equal to the square on
FF. (ill. 36.)

Synthesis. Join C, D, and produce CD to meet AB in F,
take the point E in FB, such that the square on FF, shall be equal

to the rectangle FB, FC.
Bisect CD in H, and draw UK perpendicular to CD;
then HK passes through the center. (III. 1, Cor. 1.)

At E draw EG perpendicular to FB,
then EG passes through the center, (ill. 19.)

consequently L, the point of intersection of these two lines, is

the center of the circle.

It is also manifest, that another circle may be described passing

through C, D, and touching the line AB on the other side of the

point F; and this circle will be equal to, greater than, or less than the

other circle, according as the angle CFB is equal to, greater than, or

less than the angle CFA.

PROPOSITION III. PROBLEM.

Inscribe a circle in a given sector of a circle.

Analysis. Let CAB be the given sector, and let the required circle

whose center is O, touch the radii in P, Q, and the arc of the sector

inD.
c

ED F

Join OP, OQ, these lines are equal to one another.

Join also CO.
Then in the triangles CPO, CQO, the two sides PC, CO, are equal

to QC, CO, and the'base OP is equal to the base OQ
;

therefore the angle PCO is equal to the angle QCO;
and the angle A CB is bisected by CO :

also CO produced will bisect the arc AB in D. (ill. 26.)

If a tangent EDFhe drawn to touch the arc AB in D;
and CA, CB be produced to meet it in E, F:

the inscription of the circle in the sector is reduced to the inscrip-

tion of a circle in a triangle, (iv. 4.)

PROPOSITION IV. PROBLEM.

ABCD is a rectangular parallelogram. Required to draw EG, PG
;

parallel to AD, DC, so that the rectangle EF may be equal to the figure
i EMD, and EB equal to PD.

Analysis. Let EG, FG be drawn, as required, bisecting the rect-

I
angle ABCD.
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Draw the diagonal BD cutting EG in H and FG in K.
Then BD also bisects the rectangle ABCD;

and therefore the area of the triangle EGHk equal to that of the
two triangles EHB, FKD.

N C

Draw GL perpendicular to BD, and join GB,
also produce FG to 31, and ^^ to i\r.

If the triangle LGHhe supposed to be equal to the triangle EHB,
by adding KGB to each.

the triangles LGB, GEB are equal, and they are upon the same
base GB, and on the same side of it

;

therefore they are between the same parallels,

that is, if L, E were joined, LE would be parallel to GB

;

and if a semicircle were described on GB as a diameter, it would
pass through the points E, L; for the angles at E, L are right

angles

:

also LE would be a chord parallel to the diameter GB;
therefore the arcs intercepted between the parallels LE, GB are

equal,

and consequently the chords EB, LG are also equal

;

but EB is equal to G3I, and GM to GN;
wherefore LG, G3I, GN, are equal to one another;

hence G is the center of the circle inscribed in the triangle BDC.
Synthesis. Draw the diagonal BD.

Find G the center of the circle inscribed in the triangle BDC:
through G draw EGN parallel to BC, and FK31 parallel to AB.

Then EG and FG bisect the rectangle ABCD.
Draw GL perpendicular to the diagonal BD.

In the triangles GLH, EHB, the angles GLH, IIEB are equal,

each being a right angle, and the vertical angles LUG, EHB, also the

side LG is equal to the side EB
;

therefore the triangle LHG is equal to the triangle EHB.
Similarly, it may be proved, that the triangle GLK is equal to the

triangle KFD

,

therefore the whole triangle KGII is equal to the two triangles

EHB, LCFD;
and consequently EG, FG bisect the rectangle ABCD.
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I.

1. In a given circle, place a straight line equal and parallel to &
given straight line not greater than the diameter of the circle.

2. Trisect a given circle by dividing it into three equal sectors.

3. The centers of the circle inscribed in, and circumscribed about
an equilateral triangle coincide; and the diameter of one is twice the

diameter of the other.

4. If a line be drawn from the vertex of an equilateral triangle,

perpendicular to the base, and intersecting a line drawn from either of

the angles at the base perpendicular to the opposite side ; the distance

from the vertex to the point of intersection, shall be equal to the radius

of the circumscribing circle.

5. If an equilateral triangle be inscribed in a circle, and a straight

line be drawn from the vertical angle to meet the circumference, it

will be equal to the sum or difference of the straight lines drawn from
the extremities of the base to the point where the line meets the cir-

cumference, according as the line does or does not cut the base.

6. The perpendicular from the vertex on the base of an equi-

lateral triangle, is equal to the side of an equilateral triangle inscribed

in a circle whose diameter is the base. Required proof.

7. If an equilateral triangle be inscribed in a circle, and the

adjacent arcs cut off by two of its sides be bisected, the line joining

the points of bisection shall be trisected by the sides.

8. If an equilateral triangle be inscribed in a circle, any of its

sides will cut off one-fourth part of the diameter draAvn through the

opposite angle.

9. The perimeter of an equilateral triangle inscribed in a circle is

greater than the perimeter of any other isosceles triangle inscribed in

the same circle.

10. If any two consecutive sides of a hexagon inscribed in a circle

be respectively parallel to their opposite sides, the remaining sides are

parallel to each other.

11. Prove that the area of a regular hexagon is greater than that

of an equilateral triangle of the same perimeter.

12. If two equilateral triangles be inscribed in a circle so as to

have the sides of one parallel to the sides of the other, the figure

common to both will be a regular hexagon, whose area and perimeter
will be equal to the remainder of the area and perimeter of the two
triangles.

13. Determine the distance between the opposite sides of an equi-

lateral and equiangular hexagon inscribed in a circle.

14. Inscribe a regular hexagon in a given equilateral triangle.

15. To inscribe a regular duodeeagon in a given circle, and shew
that its area is equal to the square on the side of an equilateral triangle

inscribed in the circle.

II.

16. Describe a circle touching three straight lines.

17. Any number of triangles having the same base and the same
vertical angle, will be circumscribed by one circle.

18. Find a point in a triangle from which two straight lines
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drawn to the extremities of the base shall contain an angle equal to

twice the vertical angle of the triangle. Within what limitations is

this possible ?

19. Given the base of a triangle, and the point from which the

perpendiculars on its three sides are equal; construct the triangle.

To what limitation is the position of this point subject in order that

the triangle may lie on the same side of the base ?

20. From any point B in the radius CA of a given circle whose
center is C, a straight line is drawn at right angles to CA meeting the

circumference in D ; the circle described round the triangle CBD
touches the given circle in D.

21. If a circle be described about a triangle ABC, and perpen-
diculars be let fall from the angular points A, B, C, on the opposite

sides, and produced to meet the circle in D, F, F, respectively, the
circumferences EF, FD, DF, are bisected in the points A, B, C.

22. If from the angles of a triangle, lines be drawn to the points

where the inscribed circle touches the sides ; these lines shall intersect

in the same point.

23. The straight line which bisects any angle of a triangle in-

scribed in a circle, cuts the circumference in a point which is equi-

distant from the extremities of the side opposite to the bisected angle,

and from the center of a circle inscribed in the triangle.

24. Let three perpendiculars from the angles of a triangle ABC
on the opposite sides meet in P, a circle described so as to pass through
P and any two of the points A, B, C, is equal to the circumscribing

circle of the triangle.

25. If perpendiculars Aa, Bb, Cc be drawn from the angular

points of a triangle ABC upon the opposite sides, shew that they will

bisect the angles of the triangle abc, and thence prove that the peri-

meter of abc will be less than that of any other triangle which can

be inscribed in ABC.
26. Find the least triangle which can be circumscribed about a

given circle.

27. If ABC be a plane triangle, GCF its circumscribing circle,

and OFF a diameter perpendicular to the base AB, then if CF be

joined, the angle GFQis equal to half the difference of the angles at

the oase of the triangle.

28. The line joining the centers of the inscribed and circumscribed

circles <of a triangle, subtends at any one of the angular points an angle

equal to the semi-difference of the other two angles.

III.

29. The locus of the centers of the circles, which are inscribed

in all right-angled triangles on the same hypotenuse, is the quadrant

described on the hypotenuse.

30. The center of the circle which touches the two semicircles

described on the sides of a right-angled triangle is the middle point of

the hypotenuse.

31. If a circle be inscribed in a right-angled triangle, the excess

of the sides containing the right angle above the hypotenuse is equal

to the diameter of the inscribed circle.
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32. Having given the hypotenuse of a right-angled triangle, and

the radius of the inscribed circle, to construct the triangle.

33. ABO is a triangle inscribed in a circle, the line joining the

middle points of the arcs AB, A C, will cut off equal portions of the

two contiguous sides measured from the angle A.

IV.

34. Having given the vertical angle of a triangle, and the radii of

the inscribed and circumscribed circles, to construct the triangle.

35. Given the base and vertical angle of a triangle, and also the

radius of the inscribed circle, required to construct it.

36. Given the three angles of a triangle, and the radius of the

inscribed circle, to construct the triangle.

37. If the base and vertical angle of a plane triangle be given,

prove that the locus of the centers of the inscribed circle is a circle,

and find its position and magnitude.

V.

38. In a given triangle inscribe a parallelogram which shall be

equal to one-half the triangle. Is there any limit to the number of such

parallelograms ?

39. In a given triangle to inscribe a triangle, the sides of which shall

be parallel to the sides of a given triangle.

40. If any number of parallelograms be inscribed in a given

parallelogram, the diameters of all the figures shall cut one another
in the same point.

41. A square is inscribed in another, the difference of the areas is

twice the rectangle contained by the segments of the side which are

made at the angular point of the inscribed square.

42. Inscribe an equilateral triangle in a square, (1) When the

vertex of the triangle is in an angle of the square. (2) When the ver-

tex of the triangle is in the point of bisection of a side of the square.

43. On a given straight line describe an equilateral and equi-

angular octagon.

VI.

44. Inscribe a circle in a rhombus.
45. Having given the distances of the centers of two equal circles

which cut one another, inscribe a square in the space included between
the two circumferences.

46. The square inscribed in a circle is equal to half the square
described about the same circle.

47. The square is greater than any oblong inscribed in the same
circle.

48. A circle having a square inscribed in it being given, to find a
circle in which a regular octagon of a perimeter equal to that of the
square, may be inscribed.

49. Describe a circle about a figure formed by constructing an
equilateral triangle upon the base of an isosceles triangle, the vertical

angle of which is four times the angle at the base.

50. A regular octagon inscribed in a circle is equal to the rectangle

K 5
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contained by the sides of the squares inscribed in, and circumscribed

about the circle.

51. If in any circle the side of an inscribed hexagon be produced
till it becomes equal to the side of an inscribe.

1
square, a tangent

drawn from the extremity, without the circle, shall be equal to the

side of an inscribed octagon.

VII.

52. To describe a circle which shall touch a given circle in a given

point, and also a given straight line.

53. Describe a circle touching a given straight line, and also two
given circles.

54. Describe a circle which shall touch a given circle, and each of

two given straight lines.

55. Two points are given, one in each of two given circles ; describe

a circle passing through both points and touching one of the circles.

56. Describe a circle touching a straight line in a given point, and
also touching a given circle. When the line cuts the given circle,

shew that your construction will enable you to obtain six circles

touching the given circle and the given line, but not necessarily in the

given point.

57. Describe a circle which shall touch two sides and pass through
one angle of a given square.

58. If two circles touch each other externally, describe a circle

which shall touch one of them in a given point, and also touch the

other. In what case does this become impossible ?

59. Describe three circles touching each other and having their

centers at three given points. In how many different ways may this

be done ?

VIII.

60. Let two straight lines be drawn from any point within a circle

to the circumference: describe a circle, which shall touch them both,

and the arc between them.
61. In a given triangle having inscribed a circle, inscribe another

circle in the space tnus intercepted at one of the angles.

62. Let AB, AC, be the bounding radii of a quadrant; complete
the square ABDC and draw the diagonal AD; then the part of the

diagonal without the quadrant will be equal to the radius of a circle

inscribed in the quadrant.

63. If on one of the bounding radii of a quadrant, a semicircle be
described, and on the other, another semicircle be described, so as to

touch the former and the quadrantal arc ; find the center of the circle

inscribed in the figure bounded by the three curves.

64. In a given segment of a circle inscribe an isosceles triangle,

such that its vertex may be in the middle of the chord, and the base

and perpendicular together equal to a given line.

65. Inscribe three circles in an isosceles triangle touching each

other, and each of them touching two of the three sides of the triangle.

IX.

66. In the fig. Prop. 10, Book IV, shew that the bass BD is the
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side, of a regular decagon inscribed in the larger circle, and the side of

a regular pentagon inscribed in the smaller circle.

67. In the fig. Prop. 10, Book IV, produce DC to meet the circle

in F, and draw BF; then the angle ABF shall be equal to three times

the angle BFD.
68. If the alternate angles of a regular pentagon be joined, the

figure formed by the intersection of the joining lines will itself be a

regular pentagon.

69. It ABODE be any pentagon inscribed in a circle, and AC,
BD, CE, DA, EB be joined, then are the angles ABE, BCA, CDB,
DEC, EAD, together equal to two right angles.

70. A watch-ribbon is folded up into a flat knot of five edges, shew
that the sides of the knot form an equilateral pentagon.

71. If from the extremities of the side of a regular pentagon
inscribed in a circle, straight lines be drawn to the middle of the arc

subtended by the adjacent side, their difference is equal to the radius;

the sum of their squares to three times the square of the radius ; and
the rectangle contained by them is equal to the square of the radius.

72. Inscribe a regular pentagon in a given square so that four

angles of the pentagon may touch respectively the four sides of the

square.

73. Inscribe a regular decagon in a given circle.

74. The square described upon the side of a regular pentagon ij

a circle, is equal to the square onthe side of a regular hexagon, togethei

with the square upon the side of a regular decagon in the same circle.

X.

75. In a given circle inscribe three equal circles touching each

other and the given circle.

76. Shew that if two circles be inscribed in a third to touch one
another, the tangents of the points of contact will all meet in the same
point.

77. If there be three concentric circles, whose radii are 1,2,3;
determine how many circles may be described round the interior one,

having their centers in the circumference of the circle, whose radius is

2, and touching the interior and exterior circles, and each other.

78. Shew that nine equal circles may be placed in contact, so that

a square whose side is three times the diameter of one of them will

circumscribe them,

XL
79. Produce the sides of a given heptagon both ways, till they

meet, forming seven triangles; required the sum of their vertical

angles.

80. To convert a given regular polygon into another which shall

have the same perimeter, but double the number of sides.

81. In any polygon of an even number of sides, inscribed in a

circle, the sum of the 1st, 3rd, 5th, &c. angles is equal to the sum of

the 2nd, 4th, 6th, &c.
82. Of all polygons having equal perimeters, and the same numbei

of sides, the equilateral polygon has the greatest area,
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DEFINITIONS.

I.

A less magnitude is said to be apart of a greater magnitude, when
the less measures the greater ; that is, ' when the Jess is contained a

certain number 'of times exactly in the greater/

II.

A greater magnitude is said to be a multiple of a less, when the

greater is measured by the less, that is, ' when the greater contains the

less a certain number of times exactly.'

III.

" Ratio is a mutual relation of two magnitudes of the same kind to

one another, in respect of quantity."

IV.

Magnitudes are said to have a ratio to one another, when the less

can be multiplied so as to exceed the other.

V.

The first of four magnitudes is said to have the same ratio to the

second, which the third has to the fourth, when any equimultiples

whatsoever of the first and third being taken, and any equimultiples

whatsoever of the second and fourth ; if the multiple of the first be less

than that of the second, the multiple of the third is also less than that

of the fourth : or, if the multiple of the first be equal to that of the

second, the multiple of the third is also equal to that of the fourth : or,

if the multiple of the first be greater than that of the second, the mul-

tiple of the third is also greater than that of the fourth.

VI.

Magnitudes which have the same ratio are called proportionals.

N.B. c When four magnitudes are proportionals, it is usually ex*

pressed by saying, the first is to the second, as the third to the fourth.'

VII.

When of the equimultiples of four magnitudes (taken as in the

fifth definition), the multiple of the first is greater than that of the

Second, but the multiple of the third is not greater than the multiple

of the fourth ; then the first is said to have to the second a greater

ratio than the third magnitude has to the fourth : and, on the contrary,

the third is said to have to the fourth a less ratio than the first has to

the second.

VIII.

"Analogy, or proportion, is the similitude of ratios.
5 *
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IX.

Proportion consists in three terms at least.

X.

When three magnitudes are proportionals, the first is said to have

to the third, the duplicate ratio of that which it has to the second.

XI.

When four magnitudes are continual proportionals, the first is said

to have to the fourth, the triplicate ratio of that which it has to the

second, and so on, quadruplicate, &c, increasing the denomination

still by unity, in any number of proportionals.

Definition A, to wit, of compound ratio.

When there are any number of magnitudes of the same kind, the

first is said to have to the last of them the ratio compounded of the

ratio which the first has to the second, and of the ratio which the

second has to the third, and of the ratio which the third has to the

fourth, and so on unto the last magnitude.

For example, if A, B, C, D be four magnitudes of the same kind, the first

A is said to have to the last D, the ratio compounded of the ratio ofA to B,
and of the ratio of B to C, and of the ratio of C to D ; or, the ratio of A to

D is said to be compounded of the ratios of A to B, B to C, and C to D.
And if A has to B the same ratio which F has to F; and B to Oth©

same ratio that G has to BZ; and C to _D the same that K has to L ; then,

by this definition, A is said to have to I) the ratio compounded of ratios

which are the same with the ratios ofF to F, G to Ft, andK to L. And the

same thing is to be understood when it is more briefly expressed by saying,

A has to T> the ratio compounded of the ratios of FtoF, G to FC, and Kto L.
In like manner, the same things being supposed, ifM has to iVthe same

ratio which A has to F ; then, for shortness' sake, M is said to have to N
the ratio compounded of the ratios of F to F, G to S%

and K to L.

XII.

In proportionals, the antecedent terms are called homologous to
one another, as also the consequents to one another.

' Geometers make use of the following technical words, to signify certain

ways of changing either the order or magnitude of proportionals, so that

they continue still to be proportionals.'

XIII.

Permutando or alternando,by permutation or alternately. This
word is used when there are four proportionals, and it is inferred that
the first has the same ratio to the third which the second has to the
fourth ; or that the first is to the third as the second to the fourth

:

as is shewn in Prop. xvi. of this Fifth Book,

XIY.
Invertendo, by inversion ; when there are four proportionals, and

it is inferred, that the second is to the first, as the fourth to the third.
Prop. B. Book y.
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XV.
Componendo, by composition ; when there are four proportionals,

and it is inferred that the first together with the second, is to the

second, as the third together with the fourth, is to the fourth. Prop.

18, Book V.

XVI.

Dividendo, by division ; when there are four proportionals, and it is

inferred, that the excess of the first above the second, is to the second,

as the exeess of the third above the fourth, is to the fourth. Prop. 17,

Book V.

XVII.

Convertendo, by conversion ; when there are four proportionals, and
it is inferred, that the first is to its excess above the second, as the

third to its excess above the fourth. Prop. E. Book V.

XVIII.

Ex aequali (sc. distant^), or ex sequo, from equality of distance:

when there is any number of magnitudes more than two, and as many
others such that they are proportionals when taken two and two of

each rank, and it is inferred, that the first is to the last of the first rank
of magnitudes, as the first is to the last of the others :

' Of this there

are the two following kinds, which arise from the different order in

which the magnitudes are taken, two and two.'

XIX.

Ex Eequali, from equality. This term is used simply by itself, when
the first magnitude is to the second of the first rank, as the first to the

second of the other rank ; and as the second is to the third of the first

rank, so is the second to the third of the other ; and so on in order : and
the inference is as mentioned in the preceding definition ; whence this

is called ordinate proportion. It is demonstrated in Prop. 22, Book v.

XX.
Ex sequali in proportione perturbata seu inordinate, from equality

in perturbate or disorderly proportion*. This term is used when the

first magnitude is to the second of the first rank, as the last but one is

to the last of the second rank ; and as the second is to the third of the

first rank, so is the last but two to the last but one of the second rank

:

and as the third is to the fourth of the first rank, so is the third from

the last to the last but two of the second rank ; and so on in a cross

order : and the inference is as in the 18th definition. It is demon-
strated in Prop. 23, Book v.

AXIOMS.
I.

Equimultiples of the same, or of equal magnitudes, are equal to

one another.

II.

Those magnitudes, of which the same or equal magnitudes are

equimultiples, are equal to one another.

* Prop. 4. Lib. n. Archimedis de sphsera et cylir.dro*
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III

A multiple of a greater magnitude is greater thai the same mul-
tiple of a less.

IV.

That magnitude, of which a multiple is greater than the same
multiple of another, is greater than that other magnitude.

PROPOSITION I. THEOREM.

If any number of magnitudes be equimultiples ofas many, each of each : what
multiple soever any one of them is of its part, the same multiple shall all the

first magnitudes be of all the other.

Let any number of magnitudes AB, CD be equimultiples of as

many others E, F, each of each.

Then whatsoever multiple AB is of E,
the same multiple shall AB and CD together be ofE andF together.

A G B c II D

Because AB is the same multiple of E that CD is of F,
as many magnitudes as there are in AB equal to E, so many are

there in CD equal to F.

Divide AB into magnitudes equal to E, viz. AG, GB;
and CD into CH, HD, equal each of them to F;

therefore the number of the magnitudes CH, HD shall be equal to

the number of the others A G, GB

;

and because AG is equal to E, and CH to F,
therefore AG and CH" together are equal to E andFtogether: (i.ax. 2.)

for the same reason, because GB is equal to E, and HD to F;
GB and HD together are equal to E and F together :

wherefore as many magnitudes as there are in AB equal to E,
so many are there in AB, CD together, equal to E and F together

:

therefore, whatsoever multiple AB is of E,
the same multiple is AB and CD together, of E and F together.

Therefore, if any magnitudes, how many soever, be equimultiples

of as many, each of each; whatsoever multiple any one of them is

of its part, the same multiple shall all the first magnitudes be of all

the others : ' For the same demonstration holds in any number of

magnitudes, which was here applied to two.' q.e.d.

PROPOSITION II. THEOREM.

If the first magnitude be the same multiple of the second that the third is of
the fourth, and the fifth the same multiple of the second that the sixth is of the

fourth ; then shall the first together with the fifth be the same multiple of the

second, that the third together with the sixth is of the fourth.

Let AB the first be the same multiple of C the second, that DE
the third is of F the fourth

:



208 EUCLID'S ELEMENTS.

and BG the fifth the same multple of the second, that EH the

sixth is of F the fourth.

Then shall AG, the first together with the fifth, be the same mul-
tiple of G the second, that BH, the third together with the sixth, is

of F the fourth.

Because AB is the same multiple of G that BE is of F;
there are as many magnitudes in AB equal to G, as there are in BE

equal to F,
in like manner, as many as there are in BG equal to G, so many are

there in EH equal to F :

therefore as many as there are in the whole AG equal to G,

so many are there in the whole BH equal to F:
therefore AG is the same multiple of G that BH is of F;

that is, AG, the first and fifth together, is the same multiple of the

second G,

that BH, the third and sixth together, is of the fourth F.
If therefore, the first be the same multiple, &c. q.e.d.

Cor. From this it is plain, that if any number of magnitudes AB,
BG, GHbe multiples of another G;
and as many BE, EK, KL be the same multiples of F, each of each

:

then the whole of the first, viz. AH, is the same multiple of (7,

that the whole of the last, viz. BL, is of F.

A B G H D E g_ L

C F

PROPOSITION III. THEOREM.

If the first be the same multiple of the second, which the third is of the

fourth ; and if of the first and third there be taken equimultiples ; these

shall be equimultiples, the one of the second, and the other of the fourth.

Let A the first be the same multiple of B the second, that G the

third is of B the fourth :

and of A, G let equimultiples EF, GH be taken.

Then EF shall be the same multiple of B, that GH is of D.

A c

B

—

D

—

Because EF is the same multiple of A, that GH is of C,

there are as many magnitudes in EF equal to A, as there are in GH
equal to C

:

let EF be divided into the magnitudes EK, EF, each equal to A ;

and GH into GL, LH, each equal to G :

therefore the number of the magnitudes EK, KF shall be equal to

the number of the others GL, LH;
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and because A is the same multiple of B, that C is of D,
and that EK is equal to A, and GL equal to C:

therefore EK is the same multiple of B, that GL is ofD ;

for the same reason, KF is the same multiple of B, that LIUs of D

:

and so, if there be more parts in EF, GH, equal to A, C:
therefore, because the first EK is the same multiple of the second B,

which the third GL is of the fourth D,
and that the fifth KF is the same multiple of the second B, which the

sixth LH is of the fourth D
;

EF the first, together with the fifth, is the same multiple of the second

B, (v. 2.)

which GH the third, together with the sixth, is of the fourth D.
If, therefore, the first, &c. Q. E. D.

PROPOSITION IV. THEOREM.
If the first offour magnitudes has the same ratio to the second which the

third has to thefourth ; then any equimultiples whatever of the first and third

shall have the same ratio to any equimultiples of the second and fourth, viz, ' the

equimultiple of the first shall have the same ratio to that of the second, which the

equimultiple of the third has to that of the fourth.'

Let A the first have to B the second, the same ratio which the third

C has to the fourth D
;

and of A and C'let there be taken any equimultiples whatever E, F;
and of B and D any equimultiples whatever G, H.

Then E shall have the same ratio to G, which F has to H.

K M-
E G"
A . B-

C D-

F H-

L N-

Take of E and JFany equimultiples whatever K, L,
and of G, If any equimultiples whatever M, N:

then because E is the same multiple of A, that .Fis of C;
and of E and F have been taken equimultiples I{, L

;

therefore K is the same multiple of A, that L is of C: (v. 3.)

for the same reason, M is the same multiple of B, that N is of D.
And because, as A is to B, so is C to D, (hyp.)

and of A and C have been taken certain equimultiples K, L,
and of B and D have been taken certain equimultiples M, N;

therefore ifK be greater than M, L is greater than N;
and if equal, equal ; if less, less : (v. def. 5.)

but K, L are any equimultiples whatever of E, F, (constr.)

and M, N any whatever of G, H-,

therefore as E is to G, so is F to H. (v. def. 5.)

Therefore, if the first, &c. q. e. d.

Cos. Likewise, if the first has the same ratio to the second, which
the third has to the fourth, then also any equimultiples whatever of
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the first and third shall have the same ratio to the second and fourth

;

and in like manner, the first and the third shall have the same ratio to

any equimultiples whatever of the second and fourth.

Let A the first have to B the second the same ratio which the

third C has to the fourth D.
and of A and C let E and .Fbe any equimultiples whatever.

Then E shall be to B as Fto D.
Take of F, .Fany equimultiples whatever, K, L,
and of B, D any equimultiples whatever G, II:

then it may be demonstrated, as before, that K is the same multiple

of A, that L is of C:
and because A is to B, as C is to D, (hyp.)

and of A and C certain equimultiples have been taken viz., K and L\
and of B and D certain equimultiples G, H;

therefore, if Xhe greater than G, L is greater than H;
and if equal, equal ; if less, less : (v. def. 5.)

but K, L are any equimultiples whatever of E, F, (constr.)

and G, H any whatever of B, D
;

therefore as E is to B, so is F to D. (v. def. 5.)

And in the same way the other case is demonstrated.

PROPOSITION V. THEOREM.

If one magnitude be the same multiple of another, which a magnitude taken

from the first is of a magnitude taken from the other; the remainder shall be the

same multiple of the remainder, that the whole is of the whole.

Let the magnitude AB be the same multiple of CD, that AF taken

from the first, is of CF taken from the other.

The remainder FB shall be the same multiple of the remainder
FD, that the whole AB is of the whole CD.

G A E B

C F D

Take AG the same multiple of FD, that AF is of CF:
therefore AF is the same multiple of CF, that EG is of CD : (v. 1.)

but AF, by the hypothesis, is the same multiple of CF, that AB is

of CD;
therefore EG is the same multiple of CD that AB is of CD

;

wherefore EG is equal to AB: (v. ax. 1.)

take from each of them the common magnitude AF;
and the remainder AG is equal to the remainder EB.

Wherefore, since AE is the same multiple of CF, that AG is of FD,
(constr.)

and that AG has been proved equal to EB

;

therefore AE is the same multiple of CF, that EB is of FD

:

but AE is the same multiple of'CF that AB is of CD : (hyp.)

therefore EB is the same multiple of FD, that AB is of CD,
Therefore, if one magnitude, &c. Q.E,D.
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PROPOSITION VI. THEOREM.

If two magnitudes be equimultiples of two others, and if equimultiples oj

these be taken from the first two; the remainders are either equal to these others,

or equimultiples of them.

Let the two magnitudes AB, CD be equimultiples of the two E, F,

and let AG, GST taken from the first two be equimultiples of the

same E, F.

Then the remainders OB, HD shall be either equal to E, F, or

equimultiples of them.

A G B E

K C H D F

—

i

First, let GB be equal to E:
HD shall be equal to F.
Make CK equal to F:

and because AG is the same multiple of E, that CH is of F: (hyp.)

and that GB is equal to E, and CK to F;
therefore AB is the same multiple of E, that KH is of F:

but AB, by the hypothesis, is the same multiple ofE, that CD is ofF;
therefore KH is the same multiple of F, that CD is of F:

wherefore EH is equal to CD: (v. ax. 1.)

take away the common magnitude CH,
then the remainder EC is equal to the remainder HD :

but EC is equal to F: (constr.)

therefore HD is equal to F.
Next let GB be a multiple of E.

Then HD shall be the same multiple of F.

A G B E

K C H D F

Make CK the same multiple of F, that GB is of E:
and because AG is the same multiple of E, that CH is of F: (hyp.)

and GB the same multiple of E, that CK is of F;
therefore AB is the same multiple of E, that KH is of F: (v. 2.)

but AB is the same multiple of E, that CD is of F; (hyp.)

therefore KH is the same multiple of F, that CD is of F;
wherefore KH is equal to CD : (v. ax. 1.)

take away CH from, both;

therefore the remainder KC is equal to the remainder HD :

and because GB is the same multiple of E, that KC is of F, (constr.)

and that KC is equal to HD

;

therefore HD is the same multiple of F, that GB is of E.
If, therefore, two magnitudes, &c. Q.E.D.
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PROPOSITION A. THEOREM.

If the first offour magnitudes has the same ratio to the second, which the

third has to the fourth ; then, if the first be greater than the second, the third

is also greater than the fourth ; and if equal, equal ; if less, less.

Take any equimultiples of each of them, as the doubles of each

:

then, by def. 5th of this book, if the double of the first be greater

than the double of the second, the double of the third is greater than
the double of the fourth :

but if the first be greater than the second,

the double of the first is greater than the double of the second

;

wherefore also the double of the third is greater than the double of

the fourth

;

therefore the third is greater than the fourth

:

in like manner if the first be equal to the second, or less than it,

the third can be proved to be equal to the fourth, or less than it.

Therefore, if the first, &c. Q.E.D.

PROPOSITION B. THEOREM.

If four magnitudes are proportionals, they are proportionals also when
taken inversely.

Let A be to B, as C is to D.
Then also inversely, B shall be to A, as D to C.

A b c D
G E H F

Take of B and D any equimultiples whatever E and F;
and of A and C any equimultiples whatever G and H.
First, let E be greater than G, then G is less than Ex

and because A is to B, as C is to D, (hyp.)

and of A and C, the first and third, G and H are equimultiples
;

and of B and D, the second and fourth, E and F are equimultiples

;

and that G is loss than E, therefore H is less than F; (v. def. 5.)

that is, F is greater than JE£;

if, therefore, E be greater than G,

F is greater than H;
in like manner, if E be equal to G,

jPmay be shewn to be equal to H;
and if less, less

;

but E. F, are any equimultiples whatever of B and D, (constr.)

and G, 11 any whatever of A and C;
therefore, as B is to A, so is D to C. (v. def. 5.)

Therefore, if four magnitudes, &c, Q. E. D.

PROPOSITION C. THEOREM.

If the first be the same multiple of the second, or the same part of it, that

the third is of the fourth; the first is to the second, as the third is to the

fourth.

Let the first A be the same multiple of the second B,
that the third C is of the fourth I).
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Then A shall be to B as C is to D.

A B D
E G F H

218

Take ofA and Cany equimultiples whatever E and F;
and of B and D any equimultiples whatever G and H.

Then, because A is the same multiple of B that C is of _D
;
(hyp.)

and that E is the same multiple of A, that Fi& of C; (constr.)

therefore E is the same multiple of B, that F is of t>
;

(v. 3.)

that is, _F and .Fare equimultiples of J5 and D:
but 6r and JT are equimultiples of B and D

;
(constr.)

therefore, if _F be a greater multiple of B than 6r is of B%

F is a greater multiple of I) than H is ofD

;

that is, if E be greater than G,
Fis greater than II:

in like manner, if E be equal to G, or less than it,

F may be shewn to be equal to H, or less than it,

but E, .Fare equimultiples, any whatever, of A, C; (constr.)

and G, H any equimultiples whatever of B, D;
therefore A is to B, as C is to D. (v. def. 5.)

Next, let the first A be the same part of the second B, that the

third C is of the fourth D.
Then A shall be to B, as C is to _D.

For since A is the same part of B that C is of D,
therefore i? is the same multiple of A, that D is of C:

wherefore, by the preceding case, B is to A, as D is to C;
and therefore inversely, A is to B, as C is to D. (v. B.)

Therefore, if the first be the same multiple, &c. Q. E. D.

PROPOSITION D. THEOREM.

If the first be to the second as the third to the fourth, and if the first be a

multiplexor a part of the second ; the third is the same multiple, or the same
part of the fourth.

Let A be to B as C is to D :

and first, let A be a multiple of B.
Then C shall be the same multiple of D.

A B C D

Take E equal to A,
and whatever multiple A or E is of B, make F the same multiple
ofD:

then, because A is to B, as C is to D
;
(hyp.)

and of B the second, and D the fourth, equimultiples have been
taken, E and F;

therefore A is to E, as C to .F: (v. 4. Cor.)

but ^4 is equal to E, (constr.)

therefore C is equal to F: (v. a.)
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and Fk the same multiple of D, that A is of B; (constr.)

therefore C is the same multiple of D, that A is of JR.

Next, let A the first be a part of B the second.
Then Cthe third shall be the same part of D the fourth-

Because A is to B, as Cis to D; (hyp.)

then, inversely, B is to A, as D to C: (v. b.)

A B c d

but A is a part of B, therefore B is a multiple of A : (hyp.)

therefore, by the preceding case, D is the same multiple of C;
that is, C is the same part of D, that A is of B.

Therefore, if the first, &c. Q. E. D.

PROPOSITION VII. THEOREM.

Equal magnitudes have the same ratio to the same magnitude : and the same
has the same ratio to equal magnitudes.

Let A and B be equal magnitudes, and C any other.

Then A and B shall each of them have the same ratio to C

:

and C shall have the same ratio to each of the magnitudes A and B.

D E F

Take of A and B any equimultiples whatever D and E,
and of C any multiple whatever F.

Then, because D is the same multiple of A, that E is of B, (constr.)

and that A is equal to B : (hyp.)

therefore _D is equal to E; (v. ax. 1.)

therefore, if D be greater than F, E is greater than F;
and if equal, equal ; if less, less

:

but D, E are any equimultiples of A, B, (constr.)

and -Fis any multiple of C\
therefore, as A is to C, so is B to C. (v. def. 5.)

Likewise C shall have the same ratio to A, that it has to B.
For having made the same construction,

D may in like manner be shewn to be equal to E;
therefore, if F be greater than D,

it is likewise greater than E;
and if equal, equal ; if less, less

;

but .Fis any multiple whatever of C,

and D, E are any equimultiples whatever of A, B]
therefore, C is to A as C is to B. (v. def. 5.)

Therefore, equal magnitudes, &c. q.e.d,

PROPOSITION VIII. THEOREM.

Of two unequal magnitudes, the greater has a greater ratio to any other

magnitude than the less has : and the same magnitude has a greater ratio to the

less of two other magnitudes, than it has to the greater.

Let AB, BCbe two unequal magnitudes, of which AB is the greater,

and let D be any other magnitude.
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Tken AB shall have a greater ratio to D than BCh&s to I)

;

Fig. 1.

G B

I K H D

rig. 2. Fig. 3.

L K JI Ti

E|

G B

L K D

If the magnitude which is not the greater of the two ^i C, CB, be

not less than D.
take EF,FG, the doubles of ^C, Ci?, (as in fig. 1.)

but if that which is not the greater of the two A C, CB, be less than ZX
(as in fig. 2 and 3.) this magnitude can be multiplied, so as to

become greater than D, whether it be A C, or CB.
Let it be multiplied until it become greater than D,

and let the other be multiplied as often

;

and let EF be the multiple thus taken of A C,

and FG the same multiple of CB

:

therefore EF and FG are each of them greater than D

:

and in every one of the cases,

take IZ"the double of D, K its triple, and so on,

till the multiple ofD be that which first becomes greater than FG :

let L be that multiple of D which is first greater than FG,
and K the multiple of D which is next less than L.

Then because L is the multiple of D, which is the first that becomes
greater than FG,

the next preceding multiple K is not greater than FG\
that is, FG is not less than K:

and since EF is the same multiple of A C, that FG is of CB
;
(constr.)

therefore FG is the same multiple of CB. that EG is of AB
;

(v. 1.)

that is, EG and FG are equimultiples of AB and CB
;

and since it was shewn, that FG is not less than K,
and, by the construction, EF is greater than D

;

therefore the whole EG is greater than K and D together:

but .ST together with _D is equal to L
;
(constr.)

therefore EG is greater than L

;

but FG is not greater than L : (constr.)

and EG, FG were proved to be equimultiples of AB, BC;
and L is a multiple of D

;
(constr.)

therefore AB has to D a greater ratio than i?0 has to D. (v. def.

Also & shall have to BC a greater ratio than it has to AB.
70
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For having made the same construction,

it may be shewn in like manner, that L is greater than FG,
but that it is not greater than EG

:

and L is a multiple ofD
;
(constr.)

and FG, EG were proved to be equimultiples of CB, AB :

therefore D has to CB a greater ratio than it has to AB. (v. def. 7.)

"Wherefore, of two unequal magnitudes, &c. Q.e.d.

PROPOSITION IX. THEOREM.
Magnitudes which have the same ratio to the same magnitude are equal to

one another : and those to %chich the same magnitude has the same ratio are

equal to one another.

Let, A, B have each of them the same ratio to C
Then A shall be equal to B.

A D
C F

For, if they are not equal, one of them must be greater than the other

:

let A be the greater

:

then, by what was shewn in the preceding proposition,

there are some equimultiples of A and B, and some multiple of C, such,

that the multiple ofA is greater than the multiple of C,

but the multiple of B is not greater than that of C,

let these multiples be taken

;

and let D, E be the equimultiples of A, B,
and F the multiple of C,

such that I) may be greater than F, but E not greater than F.
Then, because A is to C as B is to C, (hyp.)

and of A, B, are taken equimultiples, D, E,
and of G is taken a multiple F;
and that D is greater than F;

therefore E is also greater than F: (v. def. 5.)

but E is not greater than F; (constr.) which is impossible :

therefore A and B are not unequal ; that is, they are equal.

Next, let C have the same ratio to each of the magnitudes A and B.
Then A shall be equal to B.

For, if they are not equal, one of them must be greater than the other

:

let A be the greater

:

therefore, as was shewn in Prop. VIII.

there is some multiple F of C,

and some equimultiples E and D,of B and A such,

that F is greater than E, but not greater than D

:

and because Cis to B, as Cis to A, (hyp.)

and that F the multiple of the first, is greater than E the multiple of

the second;

therefore F the multiple of the third, is greater than D the multip'o

of the fourth: (v. def $,)
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but F is not greater than D (hyp.) ; which is impossible :

therefore A is equal to B.
Wherefore, magnitudes which, &c. q.e.d.

PROPOSITION X. THEOREM.
That magnitude which has a greater ratio than another has unto the

same magnitude, is the greater of the two ; and that magnitude to which the

same has a greater ratio than it has unto another magnitude, is the less

of the two.

Let A have to C a greater ratio than B has to C\
then A shall be greater than B.

A D
C F

For, because A has a greater ratio to C, than B has to C,

there are some equimultiples of A and B,
and some multiple of Csuch, (v. def. 7.)

that the multiple of A is greater than the multiple of (7,

but the multiple of B is not greater than it

:

let them be taken
;

and let D, E be the equimultiples of A, B, and .Fthe multiple of C\
such, that D is greater than F, but E is not greater than F:

therefore D is greater than E :

and, because D and E are equimultiples of A and B
}

and that D is greater than E;
therefore A is greater than B. (v. ax. 4.)

Next, let Chave a greater ratio to B than it has to A.
Then B shall be less than A.

For there is some multiple, F of C, (v. def. 7.)

and some equimultiples E and D of B and A, such
that F is greater than E, but not greater than D

:

therefore E is less than D :

and because E and _D are equimultiples of B and A %

and that E is less than D,
therefore B is less than A. (v. ax. 4.)

Therefore, that magnitude, &c. Q. E. D.

PROPOSITION XI. THEOREM.

Ratios that are the same to the same ratio, are the same to one another.

Let A be to B as C is to D

;

and as C to D, so let E be to F.

Then A shall be to B, as E to F.

Q jl K

B D F
I* M V.

Take of A, C, E, any equimultiples whatever G, H, K\

L
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and of B, D, F any equimultiples whatever L, 31, #,
Therefore, since A is to B as C to D,

and G, H are taken equimultiples of A, C,

and X, M, of B,D;
if 6r be greater than L, Hi* greater than M;

and if equal, equal ; and if less, less. (v. def. 5.)

Again, because C is to D, as E is to F,

and H, K are taken equimultiples of C, E°
and Jf, iV, of D, F;

if II be greater than M, K is greater than JV;

and if equal, equal ; and if less, less :

but if G be greater than L,

it has been shewn that II is greater than 3f;
and if equal, equal ; and if less, less :

therefore, if G be greater than L,

K is greater than N; and if equal, equal ; and if less, less \

and G, K are any equimultiples whatever of A, E

;

and L, N any whatever of B, F;
therefore, as A is to B, so is E to F. (v. def. 5.)

Wherefore, ratios that, &c. Q. E. D.

PROPOSITION XII. THEOREM.

If any number of magnitudes be proportionals, as one of the antecedent*

is to its consequent, so shall all the antecedents taken together be to all the

consequents.

Let any number of magnitudes A, B, C, D, E, F, be proportionals

:

that is, as A is to B, so C to D, and E to F.

Then as A is to B, so shall A, C,E together, be to B, D, .F together.

A
B

L—

H
C

K-

E-

D F-

M N

Take of A, C, E any equimultiples whatever G, H, K;
and of B, D, F any equimultiples whatever, L, 31, N.
Then, because A is to B, as C is to E, and as E to F;

and that G, H, K are equimultiples of A, C, E,
and L, M, N, equimultiples of B, D, F;

therefore, if G be greater than L,
XT is greater than 31, and K greater than N;

and if equal, equal ; and if less, less : (v. def. 5.)

wherefore if G be greater than L,
then G, H, K together, are greater than L, M, N together

;

and if equal, equal; and if less, less:

but G, and G, H, .ST together, are any equimultiples of A, and A, C9

E together

;

because if there be any number of magnitudes equimultiples of

as many, each of each, whatever multiple one of thera is of its part,

the same multiple is the whole of the whole : (v. 1.)



BOOK V. PROP. XIII. £19

for the same reason Z, and L, 31, iV
r are any equimultiples of B, and

B, D, F:
therefore as A is to B, so are A, C, E together to B, I), .F together.

(V. def. 5.)

Wherefore, if any number, &e. Q.E.D.

PROPOSITION XIII. THEOREM.

If the first has to the second the same ratio which the third has to the

fourth, but the third to the fourth, a greater ratio than the fifth has to the

sixth; the first shall also have to the second a greater ratio than the fifth

has to the sixth.

Let A the first have the same ratio to B the second, which C the

third has to D the fourth, but C the third a greater ratio to D the

fourth, than E the fifth has to F the sixth.

Then also the first A shall have to the second B, a greater ratio

than the fifth E has to the sixth F.

M G H
A—- G — E
B D _ F
N X L

Because C has a greater ratio to Z>, than E to F,
there are some equimultiples of C and E, and some ofD and F, such

{hat the multiple of Cis greater than the multiple of D, but the mul-
tiple of E is not greater than the multiple of F: (v. def. 7.)

let these be taken,

and let G, H be equimultiples of C, E,
and K, L equimultiples of D, F, such that G may be greater than K,

but H not greater than L :

and whatever multiple G is of C, take 31 the same multiple of A
;

and whatever multiple K is of D, take iV the same multiple of B

:

then, because A is to B, as C to D, (hyp.)

and of A and C, M and G are equimultiples;

and of B and D, N andK are equimultiples
;

therefore, if Mbe greater than N, G is greater than K;
and if equal, equal ; and if less, less : (V. def. 5.)

but G is greater than K; (constr.)

therefore M is greater than N:
but H is not greater than L : (constr.)

and 31, H are equimultiples of A, E;
and N, L equimultiples of B, F;

therefore A has a greater ratio to B, than E has to F. (V. def. 7.)

Wherefore, if the first, &c. Q. E. d.

Cor. And if the first have a greater ratio to the second, than the

third has to the fourth, but the third the same ratio to the fourth,

which the fifth has to the sixth ; it may be demonstrated, in like

manner, that the first has a greater ratio to the second, than the fifth

has to the sixth.

L2
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PROPOSITION XIV. THEOREM.

If the first has the same ratio to the second which the third has to the fourth;

then, if the first be greater than the third, the second shall be greater than the

fourth; and if equal, equal ; and if less, less.

Let the first A have the same ratio to the second B which the

third C has to the fourth D.
IfA be greater than C, B shall be greater than D. (fig. 1.)

1. 2. 3.

A A A
B B B
C C C-

D D i)

Because A is greater than C, and B is any other magnitude,
A has to B a greater ratio than C has to B : (v. 8.)

but, as A is to B, so is C to D
;
(hyp.)

therefore also Chas to _Da greater ratio than Chas to J5: (v. 13.)

but of two magnitudes, that to which the same has the greater ratio,

is the less: (v. 10.)

therefore D is less than B;
that is, B is greater than D.

Secondly, ifA be equal to C, (fig, 2.)

then B shall be equal to D.
For A is to B, as C, that is, AtoD:
therefore B is equal to D. (v. 9.)

Thirdly, if A be less than C, (fig. 3.)

then B shall be less than D.
For C is greater than A

;

and because C is to D, as A is to B,
therefore D is greater than B, by the first case

;

that is, B is less than D.
Therefore, if the first, &c. Q.E.D.

PROPOSITION XV. THEOREM.

Magnitudes have the same ratio to one another which their equimultiples
r
Mve.

Let ABhe the same multiple of C, that DJEis of F.

Then C shall be to F, as AB is to BE.

AGHB DKLE

Because AB is the same multiple of C, that DE is of F-,

there are as many magnitudes in AB equal to C, as there are in DE
equal to F:

let AB be divided into magnitudes, each equal to C, viz. A G
}
GH

}
IIB',



BOOK V. PROP. XVI. 221

and DE into magnitudes, each equal to F, viz. DK, KL, LE :

then the number of the first AG, GH, HB, is equal to the number
of the last DK, KL, LE :

and because A G, GH, HB are all equal,

and that DK, KL, LB, are also equal to one another

;

therefore AG is to DK, as GH to KL, and as HB to LE: (v. 7.)

but as one of the antecedents is to its consequent, so are all the

antecedents together to all the consequents together, (v. 12.)

wherefore, as AG is to DK, so is AB to DE :

but AG is equal to Cand DK to F:
therefore, as C is to F, so is AB to DE.

Therefore, magnitudes, &c. q.e.d.

PROPOSITION XVI. THEOREM.

Iffour magnitudes of the same kind be proportionals, they shall also 1e

proportionals when taken alternately.

Let A, B, C, D be four magnitudes of the same kind, which are

proportionals, viz. as A to B, so C to D.
They shall also be proportionals when taken alternately

:

that is, A shall be to C, as B to D.

E — G-

A C-

B D.

F — H-

Take of A and B any equimultiples whatever E and F:
and of C and D take any equimultiples whatever G and H.
And because E is the same multiple of A, that F is of B,

and that magnitudes have the same ratio to one another which
their equimultiples have; (v. 15.)

therefore A is to B, as E is to F:
but as A 13 to B so is (7 to D; (hyp.)

wherefore as Cis to D, so is E to F: (v. 11.)

again, because G, H are equimultiples of C, D,
therefore as Cis to D, so is G to H: (v. 15.)

but it was proved that as C is to D, so is E to F\
therefore^as E is to F, so is G to H. (v. 11.)

But when four magnitudes are proportionals, if the first be greater

""ban the third, the second is greater than the fourth :

and if equal, equal ; if less, less
;

(V. 14.)

therefore, if E be greater than G, .F likewise is greater than H;
and if equal, equal ; if less, less

:

and E, F are any equimultiples whatever of A,B
;

(constr.)

and G, H any whatever of C, D :

therefore A is to C, as B to D. (v. def. 5.)

If then four magnitudes, &c. Q. E. d.
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PROPOSITION XVII. THEOKEM.

If magnitudes, taken jointly, he proportionals, they shall also be pro-

poriionals when taken separately : tliat is, if two magnitudes together have

to one of them, the same ratio which two others have to one of these, the

remaining one of the first two shall have to the other the same ratio which
the remaining one of the last two has to the other of these.

Let AB, BE, CD, DF be the magnitudes, taken jointly which
are proportionals

;

that is, as AB to BE, so let CD be to DF.
Then they shall also be proportionals taken separately,

viz. as AE to EB, so shall OF be to FD.GHK X LMNP
A EB C FD

Take of AE, EB, CF, FD any equimultiples whatever GH, HK,
LM, MN:
and again, of EB, FD take any equimultiples whatever XX, NP.
Then because GH is the same multiple of AE, that UK is of EB,

therefore Gil is the same multiple of AE, that GK is ofAB : (v. 1.)

but GH is the same multiple of AE, that LM is of CF:
therefore GK is the same multiple of AB, that LM is of CF.

Again, because LM is the same multiple of CF, that MN is of FD;
therefore LM is the same multiple of CF, that LN is of CD: (v. 1.)

but LM was shewn to be the same multiple of CF, that GK is of AB?,
therefore GK is the same multiple of AB, that LN is of CD

;

that is, Git, LN are equimultiples of AB, CD.
Next, because UK is the same multiple of EB, that MN is of FD

;

and that KX is also the same multiple of EB, that NP is of FD
;

therefore KX is the same multiple of EB, that MP is of FD. (v. 2.)

And because AB is to BE, as CD is to DF, (hyp.)

and that ofAB and CD, GK and LN are equimultiples,

and of EB and FD,HX and MP are equimultiples

;

therefore if GK be greater than HX, then LN is greater than MP\
and if equal, equal ; and if less, less : (V. def. 5.)

but if Gil he greater than KX,
then, by adding the common part UK to both,

GK is greater than HX; (i. ax. 4.)

wherefore also LN is greater than MP :

and by taking away iLTJV" from both,

LMis greater than NP : (i. ax. 5.)

therefore, if GH be greater than KX,
LM is greater than NP.

In like manner it may be demonstrated,

that if GH be equal to KX,
LM is equal to NP ; and if less, less :

but Gil, LM are any equimultiples Avhatever of AE., CF, (constr.)

and KX, NP are any whatever of EB, FD :

therefore, as AE is to EB, so is CFto FD. (v. def. 5.)

If then magnitudes, &c. Q. E. d.
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PROPOSITION XVIII. THEOREM.

If magnitudes, taken separately, he proportionals, they shall also be

proportionals when taken jointly : that is, if the first be to the second, as

the third to the fourth, the first and second together shall be to the second,

as the third and fourth together to the fourth.

Let AE, EB, CF, FI) be proportionals
;

that is, as AE to EB, so let CFhe to FD.
Then they shall also be proportionals when taken jointly;

that is, as AB to BE, so shall CD be to DF.

G KOH L NPM
A E B C F D

Take of AB, BE, CD, DF any equimultiples whatever GH, HK,
LM, MN;
and again, of BE, D_Ftake any equimultiples whatever KO, NP :

and because KO, NP are equimultiples of BE, DF;
and that KH, NM are likewise equimultiples of BE, DF;

therefore if KO, the multiple of BE, be greater than KH, which
is a multiple of the same BE,

then NP, the multiple of DF, is also greater than NM, the mul-
tiple of the same DF

;

and if KO be equal to KH,
NP is equal to NM ; and if less, less.

First, let KO be not greater than KH;
therefore NP is not greater than NM:

and because GH, UK, are equimultiples of AB, BE,
and that AB is greater than BE,

therefore GH is greater than HK
;

(v. ax. 3.)

but KO is not greater than KH;
therefore GH is greater than KO.

In like manner it may be shewn, that LM is greater than NP.
Therefore, if KO be not greater than KH,

then GH, the multiple of AB, is always greater than KO, the

multiple of BE

;

and likewise LM, the multiple of CD, is greater than NP, the

multiple of DF.
Next, let KO be greater than KH;

therefore, as has been shewn, NP is greater than NM.

G K HO LNMP
E B C F D

And because the whole GH is the same multiple of the whole
AB, that HK is of BE,

therfifore the remainder GK is the same multiple of the remainder
AE that GH isof AB, (v. 5.)

which is the same that LM is of CD.
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In like manner, because LM is the same multiple of CD, that MN
is of DE,

therefore the remainder LN is the same multiple of the remainder
CF, that the whole LM is of the whole CD : (v. 5.)

but it was shewn that LM is the same multiple of CD, that GK
is of AE;

therefore GK is the same multiple of AH, that LN is of CF;
that is, GK, LN are equimultiples of AE, CF.

And because KO, NP are equimultiples of BE, DF,
therefore if from KO, NP there be taken KH, NM, which are

likewise equimultiples of BE, DF,
the remainders HO, MP are either equal to BE, DF, or equi-

multiples of them, (v. 6.)

First, let HO, MP be equal to BE, DF:
then because AE is to EB, as CF to FD, (hyp.)

and that GK, LN are equimultiples of AE, CF;
therefore GK is to EB, as LN to FD : (v. 4. Cor.)

but HO is equal to EB, and MP to FD
;

wherefore G^JTis to JTO, as ZiVto JfP;
therefore if GK be greater than HO, LN is greater than MP

;
(v. A.)

and if equal, equal ; and if less, less.

But let HO, MP be equimultiples of EB, FD.
Then because AE is to EB, as OF to FD, (hyp.)

L N M

C FDA EJJ

and that of AE, CFare taken equimultiples GK, LN;
and of EB, FD, the equimultiples HO, MP;

if GK be greater than HO, LN is greater than MP

;

and if equal, equal ; and if less, less
;

(v. def. 5.)

which was likewise shewn in the preceding case.

But if GHhe greater than KO,
taking KH from both, GK is greater than HO

;
(I. ax. 5.)

wherefore also LN is greater than MP

;

and consequently adding NM to both,

LM is greater than NP : (l. ax. 4.)

therefore, if GHhe greater than KO,
LM is greater than NP.

In like manner it may be shewn, that if GHhe equal to KO,
LM is equal to NP ; and if less, less.

And in the case in which KO is not greater than KH,
it has been shewn that GH is always greater than KO,

and likewise LM greater than NP

:

but GH, LM are any equimultiples whatever of AB, CD, (constr.)

and KO, NP are any whatever of BE, DF;
therefore, as AB is to BE, so is CD to DF. (v. def. 5.)

If then magnitudes, &c. Q. E. D.
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PROPOSITION XIX. THEOREM.

If a whole magnitude be to a whole, as a magnitude taken from the first

is to a magnitude taken from the other; the remainder shall be to the

remainder as the ivhole to the whole.

Let the whole AB be to the whole CD, as AH a, magnitude taken

from AB is to CF a magnitude taken from CD.
Then the remainder EB shall be to the remainder FD. as the whole
AB to the whole CD.

A E B

Because AB is to CD, as AE to CF:
therefore alternately, BA is to AE, as DC to CF: (v. 16.)

and because if magnitudes taken jointly be proportionals, they are

also proportionals, when taken separately; (v. 17.)

therefore, as BE is to EA, so is DF to FC;
and alternately, as BE is to DF, so is EA to FC

:

but, as AE to CF, so, by the hypothesis, is AB to CD;
therefore also BE the remainder is to the remainder DF, as the whole

AB to the whole CD. (v. 11.)

"Wherefore, if the whole, &c. Q. E. D.

Cor.—If the whole be to the whole, as a magnitude taken from
the first is to a magnitude taken from the other; the remainder shall

likewise be to the remainder, as the magnitude taken from the first

to that taken from the other. The demonstration is contained in th^

preceding.

PROPOSITION E. THEOREM.

If four magnitudes be proportionals, they are also proportionals by con-

version ; that is, the first is to its excess above the second, as the third to its

excess above the fourth.

Let AB be to BE, as CD to DF.
Then BA shall be to AE, as DC to CF.

A E B

F D

Because AB is to BE, as CD to DF,
therefore by division, AE is to EB, as CF to FD

;
(v. 17.)

and by inversion, BE is to EA, as DF is to CF; (v. B.)

wherefore, by composition, BA is to AE, as DC is to CF. (v. 18.)

If therefore four, &c. Q. E. D.

L5
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PROPOSITION XX. THEOREM.

If there be three magnitudes, and other three, which, taken two and two, have

the same ratio ; then if the first be greater than the third, the fourth shall be

greater than the sixth ; and if equal, equal; and if less, less.

Let A, B, Che three magnitudes, and D, E, F other three, which
taken two and two have the same ratio,

viz. as A is to B, so is D to E;
and as B to C, so is E to F.

IfA be greater than C, D shall be greater than F;
and if equal, equal ; and if less, less.

A B C

B E F

Because A is greater than C, and B is any other magnitude,

and that the greater has to the same magnitude a greater ratio than

the less has to it; (v. 8.)

therefore A has to B a greater ratio than Chas to B

:

but as D is to E, so is A to B
;
(hyp.)

therefore D has to E a greater ratio than CtoB: (v. 13.)

and because B is to C, as E to F,

by inversion, Cis to B, as Fis to E: (v. B.)

and D was shewrn to have to E a greater ratio than C to B :

therefore D has to E a greater ratio than Fto E: (v. 13. Cor.)

(but the magnitude which has a greater ratio than another to the same
magnitude, is the greater of the two; (v. 10.)

therefore D is greater than F.

Secondly, let A be equal to C.

Then D shall be equal to F.

A B C-

D __ E—

—

F-

Because A 2nd Care equal to one another,

A is to B, as Cis to B : (v. 7.)

but A is to B, as D to E; (hyp.)

and Cis to B, as Fto E; (hyp.)

wherefore I) is to E, as .Fto E; (v. 11. and V. B.)

and therefore D is equal to F. (v. 9.)

Next, let A be less than C.

Then D shall be less than F.

A' B C-

D E F-

For C is greater than A
;

and as was shewn in the first case, Cis to B, as .Fto JE7
$

and in like manner, B is to A, as E to D
;

therefore .Fis greater than D, by the first case;

that is, D is less than F.

Therefore, if there be three, &c. Q.E.XK
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PROPOSITION XXI. THEOEEM.

If there be three magnitudes, and other three, which have the same ratio

taken two and two, bitt in a cross order ; then if the first magnitude be

greater than the third, the fourth shall be greater than the sixth ; and if

equal, equal; and if less, less.

Let A, B, Che three magnitudes, and I), E, F other three, which
have the same ratio, taken two and two, but in a cross order,

viz. as A is to B so is E to F,
and as B is to C, so is D to E.

If A be greater than C, D shall be greater than F;
and if equal, equal ; and if less, less.

A B C-

D E F-

Because A is greater than C, and B is any other magnitude,

A has to B a greater ratio than Chas to B: (v. 8.)

but as E to F, so is A to B-, (hyp.)

therefore E has to F a greater ratio than C to B : (v. 13.)

and because B is to C, as D to ^; (hyp.)

by inversion, C is to B, as E to D

:

and E was shewn to have to F a greater ratio than Chas to B
;

therefore E has to F a greater ratio than E has to D : (v. 13. Cor.)

but the magnitude to which the same has a greater ratio than it has

to another, is the less of the two : (v. 10.)

therefore F is less than Z)

;

that is, D is greater than F.
Secondly, Let A be equal to C;

D shall be equal to F.

A B C —
D E — F

Because A and C are equal,

A is to B, as C is to B : (v. 7.)

but A is to B, as E to F; (hyp.)

and C is to B, as E to D

;

wherefore E is to F, as E to D\ (v. 11.;

and therefore D is equal to F. (v. 9.)

Next, let A be less than C:
Z> shall be less than F.

A B C

D E F

For C is greater than A

;

and as was shewn, C is to B, as E to D,
and in like manner B is to A, as F to E

;

therefore Fh greater than D, by case first;

that is, D is less than F.

Therefore, if there be three, &c. q,e.d»
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proposition xxii. theorem:.

If there be any number of magnitudes, and as many others, which taken
tivo and two in order, have the same ratio ; the first shall have to the last of
the first magnitudes, the same ratio which the first has to the last of the

others. N.B. This is usually cited by the words " ex sequali," or " ex
aequo."

First, let there be three magnitudes A, B, C, and as many ethers
"9, E, F

i
which taken two and two in order, have the same ratio,

that is, such that A is to B, as D to E;
and as B is to G, so is E to F.

Then A shall be to (7, as J) to F.

G k M
A B C
D E F
H L N

Take of A and D any equimultiples whatever G and H;
and of B and E any equimultiples whatever K and L

;

and of G and F any whatever M and N:
then because A is to B, as D to E,

and that G, H are equimultiples of A, D,
and K, L equimultiples of B, E\

therefore as G is to iT,"so is HtoL: (v. 4.)

for the same reason, K is to M as L to N

:

and because there are three magnitudes G, K, M, and other three

H, L, N, which two and two, have the same ratio

;

therefore if G be greater than M, H is greater than JV";

and if equal, equal; and if less, less; (v. 20.)

but G, H are any equimultiples whatever of A, D,

and M, N are any equimultiples whatever of C, F; (constr.)

therefore, as A is to G, so is D to F. (v. def. 5.)

Next, let there be four magnitudes, A, B, C, D,

and other four E, F, G, H, which two and two have the same ratio,

viz. as A is to B, so is E to F;
and as B to G, so F to G

;

and as G to D, so G to H.
Then A shall be to D, as E to H.

A.B.C.D
E.F.G.H

Because A, B, O are three magnitudes, and E, F, G other tines,

which taken two and two, have the same ratio

;

therefore by the foregoing case, A is to C, as E to G

:

but G is to D, as G is to H;
wherefore again, by the first case A is to B, as E is to 77:

and so on, whatever be the number of magnitudes.

Therefore, if there be any number, &c. q.e.d.
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PROPOSITION XXIII. THEOREM.

If there be any number of magnitudes, and as many others, which
taken tioo and two in a cross order, have the same ratio ; the first shall have

to the last of the first magnitudes the same ratio which the first has to the

last of the others. N.B. This is usually cited by the words " ex aequaii

in proportione perturbata;" or " ex Eequo perturbato."

First, let there be three magnitudes A, B, C, and other three D,
E, F, which taken two and two in a cross order have the same ratio,

that is, such that A is to B, as E to F;
and as B is to C, so is D to E.

Then A shall be to C, as D to F.

G H L

A B C

D E F

K M —

-

N

Take of A, B, D any equimultiples whatever G, II, K;
and of C, F, F any equimultiples whatever L, M, N:

and because G, II are equimultiples of A, B,
and that magnitudes have the same ratio which their equimultiples

have; (v. 15.)

therefore as A is to B, so is G to II:

and for the same reason, as F is to F, so is M to N:
but as A is to B, so is E to F; (hyp.)

therefore as G is to II, so is M to N: (v. 11.)

and because as B is to C, so is D to F, (hyp.)

and that H, K are equimultiples of B, _D, and L, M of C, F;
therefore as His to L, so is K to M : (v. 4.)

and it has been shewn that G is to H, as Mto IV:

therefore, because there are three magnitudes G, H, L, and other

three K, M, N, which have the same ratio taken two and two in a

cross order;

if G be greater than X, K is greater than IV:

and if equal, equal ; and if less, less : (v. 21.)

but G, K are any equimultiples whatever of A, D
;

(constr.)

and i, IV any whatever of C, F;
therefore as A is to C, so is D to F. (v. def. 5.)

Next, let there be four magnitudes A, B, C, D, and other four E,
F, G, II, which taken two and two in a cross order have the same
ratio.

viz. A to B, as G to H;
Bto C, as Fto G;

and Cto D, as E to F.
Then A shall be to D, as E to H.

A.B.C.D
E.F.G.H

Because A, B, C are three magnitudes, and F, G, H other three,

which taken two and two in a cross order, have the same ratio

;



230 euclid's elements.

by the first case, A is to C, as F to H %

but C is to D, as E is to F\
wherefore again, by the first case, A is to D, as E to U;

and so on, whatever be the number of magnitudes.

Therefore, if there be any number, &c. Q. E. D.

PROPOSITION XXIV. THEOREM.

If the first has to the second the same ratio which the third has to the fourth ;

and the fifth to the second the same ratio which the sixth has to the fourth; the

first and fifth together shall have to the second, the same ratio which the third

and sixth together have to the fourth.

Let AB the first have to C the second the same ratio which DE
the third has to F the fourth

;

and let BG the fifth have to C the second the same ratio which
EH the sixth has to F the fourth.

Then AG, the first and fifth together, shall have to C the second,

the same ratio which EH, the third and sixth together* has to F the

fourth.

A B Q D E H

Because BG is to C, as EII to F;
by inversion, Cis to BG, as jPto EH: (v. B.)

and because, as AB is to C, so is DE to F; (hyp.)

and as C to BG, so is JPto EH;
ex eequali, AB is to BG, as DE to EH: (v. 22.)

and because these magnitudes are proportionals when taken separately,

they are likewise proportionals when taken jointly; (v. 18.)

therefore as A G is to GB, so is DH to HE

:

but as GB to C, so is HE to F: (hyp.)

therefore, ex eequali, as A G is to C, so is DH to F. (v. 22.)

Wherefore, if the first, &c. q. E. d.

Cob. 1.—If the same hypothesis be made as in the proposition, the

excess of the first and fifth shall be to the second, as the excess of the

third and sixth to the fourth. The demonstration of this is the same
with that of the proposition, if division be used instead of composition.

Cob. 2.—The proposition holds true of two ranks of magnitudes,

whatever be their number, of which each of the first rank has to the

second magnitude the same ratio that the corresponding one of the

second rank has to a fourin magnitude : as is manifest.

PROPOSITION XXV. THEOREM.

If four magnitudes of the same hind are proportionals, the greatest and
least of them together are greater than the other two together.

Let the four magnitudes AB, CD, E, F be proportionals,

viz. AB to CD, as E to F;
and let AB be the greatest of them, and consequently Fthe least.

(V. 14. and A.)
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Then AB together with J7
shall be greater than CD together with E.

A G b c HP
E F

Take AG equal to F, and CH equal to F.

Then because as AB is to CD, so is E to F,
and that AG is equal to F, and CH equal to .F,

therefore AB is to CD, as AG to CZT: (V. 11, and 7.)

and because AB the whole, is to the whole CD, as AG is to Ci/,

likewise the remainder GB is to the remainder HD, as the whole AB
is to the whole CD : (v. 19.)

but AB is greater than CD
;
(hyp.)

therefore GB is greater than HD
;

(v. a.)

and because ^46r is equal to E, and CH to F;
A G and _F together are equal to CH and F together : (i. ax. 2.)

therefore if to the unequal magnitudes GB, HD, of which GB is

the greater, there be added equal magnitudes, "viz. to GB the two AG
and F, and CH and F to HD

;

^4i? and _F together are greater than CD and F. (1. ax. 4.)

Therefore, if four magnitudes, &c. q.e.d.

PROPOSITION F. THEOREM.

Ratios which are compounded of the same ratios, are the same to one another.

Let A be to B, as D to F; and 5 to C, as F to _F.

Then the ratio which is compounded of the ratios of A to B, and B
to C,

which, by the definition of compound ratio, is the ratio of A to C,

shall be the same with the ratio of D to F, which, by the same
definition, is compounded of the ratios of .1) to F, and F to F.

A.B. C

D.E.F

Because there are three magnitudes A, B, C, and three others D, F, F,
which, taken two and two, in order, have the same ratio

;

ex sequali, A is to C, as D to F. (v. 22.)

Next, let A be to B, as E to F, and B to C, as DtoE:

A.B.C
D.E.F

therefore, ex cequali in proportions perturbata, (v. 23.)

A is to C, as D to F;
that is, the ratio of A to C, which is compounded of the ratios of

A to B, and B to C, is the same with the ratio of D to F, which is

compounded of the ratios of D to F, and F to F.
And in like manner the proposition may be demonstrated, what-

ever be the number of ratios in either case.
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PROPOSITION G. THEOREM.

If several ratios be the same to several ratios, each to each; the ratio

which is compounded of ratios which are the same to the first ratios, each
to each, shall be the same to the ratio compounded of ratios which are the

same to the other ratios, each to each.

Let A be to B, as E to P; and to D, as G to H:
and let A be to B, as K to P ; and C to P, as L to M.

Then the ratio of K to M,
by the definition of compound ratio, is compounded of the ratios of

K to P, and L to M, which are the same with the ratios of A to B and
(7 to P.
Again, as E to F, so let N be to ; and as 6r to JET, so let be to P.
Then the ratio ofN to P is compounded of the ratios of N to 0, and
to P, which are the same with the ratios of E to F, and G to II:

and it is to be shewn that the ratio of K to ill, is the same with

the ratio of N to P

;

or that iT is to M, as 2V to P.

A.B.O.D. K.L.M
j

E.F.G.H. N.O.P

Because K is to L, as (J. to P, that is, as E to F, that is, as) NtoO\
and as P to ilf, so is (0 to P, and so is G to P, and so is) to P

;

ex sequali, IT is to ilf, as JVto P. (v. 22.)

Therefore, if several ratios, &c. q.e.d.

PROPOSITION H. THEOREM.

If a ratio ivhich is compounded of several ratios be the same to a ratio

ichich is compounded of several other ratios; and if one of the first ratios,

or the ratio which is compounded of several of them, be the same to one of

the last ratios, or to the ratio ichich is compounded of several of them;

then the remaining ratio of the first, or, if there be more than one, the

ratio compounded of the remaining ratios, shall be the same to the remain-

ing ratio of the last, or, if there be more than one, to the ratio compounded

of these remaining ratios.

Let the first ratios be those of A to B, B to 0, C to D}
D to E, and

PtoP;
and let the other ratios be those of G to H, II to K, K to L

}
and

Pto M :

also, let the ratio of A to F, which is compounded of the first ratios,

be the same with the ratio of G to M, which is compounded of the

other ratios

;

and besides, let the ratio of A to P, which is compounded of the

ratios of A to B, B to C, C to P, be the same with the ratio of G to

K, which is compounded of the ratios of G to H, and II to K.

Then the ratio compounded of the remaining first ratios, to wit, of

the ratios of P to P, and P to P, which compounded ratio is the ratio

,
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of D to F, shall be the same with the ratio ofK to M, which is com-
pounded of the remaining ratios of K to L, and L to M of the other

ratios.

A.B.C.D.E.F
G..H.K.L.M

Because, by the hypothesis, A is to J), as G to K,
by inversion, I) is to A, as K to 6r; (v. B.)

and as A is to F, so is 6r to M
;

(nyp.)

therefore, ex sequali, D is to F, as JT to Jf. (v. 22.)

If, therefore, a ratio which is, &c. Q. e.d.

PROPOSITION K. THEOREM.

If there be any number of ratios, and any number of other ratios, such, that

the ratio which is compounded of ratios which are the same to the first ratios,

each to each, is the same to the ratio which is compounded of ratios which
are the same, each to each, to the last ratios ; and if one of the first ratios, or the

ratio which is compounded of ratios which are the satne to several of the first

ratios, each to each, be the same to one of the last ratios, or to the ratio which
is compounded of ratios which are the same, each to each, to several of the last

ratios ; then the remaining ratio of the first, or, if there be more than one,

the ratio which is compounded of ratios which are the same each to each to

the remaining ratios of the first, shall be the same to the remaining ratio of the

last, or, if there be more than one, to the ratio which is compounded of ratios

which are the same each to each to these remaining ratios.

Let the ratios of AtoB,C to D, E to F, be the first ratios :

and the ratios of G to IT, K to L, M to 2V, O to P, Q to R, be the

other ratios

:

and let A be to B, as S to T; and C to D, as Tto V; and E to F,

as TtoX:
therefore, by the definition of compound ratio, the ratio of 8 toXh

compounded of the ratios of S to T, Tto V, and Vto X, which are

the same to the ratios ofA to B, C to D, E to F: each to each.

Also, as G to H, so let Y be to Z\ and K to L, as Z to a
;M to N, as a to b ; O to P, as b to c ; and Q to R, as c to d :

therefore, by the same definition, the ratio of Yto d is compounded
of the ratios of YtoZ,Z to a, a to b, b to c, and c to d, which are the
same, each to each, to the ratios of G to H, K to L, M to N, O to P,
and Q to R :

therefore, by the hypothesis, S is to X, as Y to d.

Also, let the ratio 'of A to B, that is, the ratio of S to T, which is

one of the first ratios, be the same to the ratio of e to g, which is com-
pounded of the ratios of e to f, and f to g, which, by the hypothesis,

are the same to the ratios of G to H, and K to L, two of the other
ratios

;

and let the ratio of h to I be that which is compounded of the ratios

of h to k, and k to I, which are the same to the remaining first ratios,

viz. of C to .D, and E to F,
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also, let the ratio of m to p, be that which is compounded of the
ratios of m to n, n to o, and o to p, which are the same, each to each,

to the remaining other ratios, viz. of M to N, O to P, and Q to R,
Then the ratio of h to I shall be the same to the ratio of m to p ; or

h shall be to I, as m to p.

h, k, 1.

A, B ; C, D ; E, F. S, T, V, X.

G, H; K, L; M, N; 0, P; Q, R. Y, Z, a, b, c, d.

e, f, g. m, n, o, p.

Because e is tof, as (6? to H, that is, as) Fto Z;
and/ is to g, as (K to X, that is, as) Z to a;

therefore, ex sequali, e is to #, as Yto a : (v. 22.)

and by the hypothesis, A is to B, that is, £ to T, as e to g ;

wherefore #is to T, as 7toa; (v. 11.)

and by inversion, Tis to S, as a to I7": (v. B.)

but S is to X, as F to D
;
(hyp.)

therefore, ex sequali, T is to X, as atod\
also, because 7i is to k, as (Cto D, that is, as) Tto V; (hyp.)

and & is to I as (i? to F, that is, as) Fto X;
therefore, ex sequali, A is to /, as Tto Z:

in like manner, it may be demonstrated, that ?n is to p, as a to d
;

and it has been shewn, that T is to X, as a to d\

therefore h is to I, as m to^>. (v. 11.) Q.E.D.

The propositions G and K are usually, for the sake of brevity, ex-

pressed in the same terms with propositions F and H : and therefore

it was proper to shew the true meaning of them when they are so

expressed ; especially since they are very frequently made use of by
geometers.



NOTES TO BOOK V

In the first four Books of the Elements are considered, only the
absolute equality and inequality of Geometrical magnitudes. The Fifth

Book contains an exposition of the principles whereby a more definite

comparison may be instituted of the relation of magnitudes, besides their

simple equality or inequality.

The doctrine of Proportion is one of the most important in the whole
course of mathematical truths, and it appears probable that if the subject

were read simultaneously in the Algebraical and Geometrical form, the
investigations of the properties, under both aspects, would mutually
assist each other, and both become equally comprehensible ; also their

distinct characters would be more easily perceived.
Def. t, ii. In the first Four Books the word part is used in the same

sense as we find it in the ninth axiom, " The whole is greater than its

part:" where the word part means any portion whatever of any whole
magnitude : but in the Fifth Book, the word part is restricted to mean
that portion of magnitude which is contained an exact number of times
in the whole. For instance, if any straight line be taken two, three, four.

or any number of times another straight line, by Euc. i. 3 ; the less line

is called a part, or rather a submultiple ofthe greater line ; and the greater,

a multiple of the less line. The multiple is composed of a repetition of

the same magnitude, and these definitions suppose that the multiple may
be divided into its parts, any one of which is a measure of the multiple

And it is also obvious that when there are two magnitudes, one of whicl
is a multiple of the other, the two magnitudes must be of the same kind,

that is, they must be two lines, two angles, two surfaces, or two solids :

thus, a triangle is doubled, trebled, &c, by doubling, trebling, &c. the
base, and completing the figure. The same may be said of a parallelo-

gram. Angles, arcs, and sectors of equal circles may be doubled, trebled.

or any multiples found by Prop, xxvi—xxrx, Book ra.

Two magnitudes are said to be commensurable when a third magnitude
of the same kind can be found which will measure both of them ; and
this third magnitude is called their common measure : and when it is the
greatest magnitude which will measure both of them, it is called the
greatest common measure of the two magnitudes : also when two magni-
tudes of the same kind have no common measure, they are said to be
incommensurable. The same terms are also applied to numbers.

Unity has no magnitude, properly so called, but may represent that

portion of every kind of magnitude which is assumed as the measure of

all magnitudes of the same kind. The composition of unities cannot pro-

duce Geometrical magnitude ; three units are more in number than one
unit, but still as much different from magnitude as unity itself. Numbers
may be considered as quantities, for we consider every thing that can be
exactly measured, as a quantity.

Unity is a common measure of all rational numbers, and all numerical
reasonings proceed upon the hypothesis that the unit is the same through-
out the whole of any particular process. Euclid has not fixed the magni-
tude of any unit of length, nor made reference to any unit of measure of

lines, surfaces, or volumes. Hence arises an essential difference between
number and magnitude ; unity, being invariable, measures all rational

numbers ; but though any quantity be assumed as the unit of magnitude,
it is impossible to assert that this assumed unit will measure all other
magnitudes of the same kind.



236 Euclid's elements.

All whole numbers therefore are commensurable ; for unity is theii

common measure : also all rational fractions proper or improper, are com-
mensurable ; for any such fractions may be reduced to other equivalent
fractions having one common denominator, and that fraction whose de-
nominator is the common denominator, and whose numerator is unity,
will measure any one of the fractions. Two magnitudes having a common
measure can be represented by two numbers which express the number of

times the common measure is contained in both the magnitudes.
But two incommensurable magnitudes cannot be exactly represented by

any two whole numbers or fractions whatever ; as, for instance, the side

of a square is incommensurable to the diagonal of the square. For, it may
be shewn numerically, that if ths side of the square contain one unit of

length, the diagonal contains more than one, but less than two units of

length. If the side be divided into 10 units, the diagonal contains more
than 14, but less than 15 such units. Also if the side contain 100 units,

the diagonal contains more than 141, but less than 142 such units. It is

also obvious, that as the side is successively divided into a greater number
of equal parts, the error in the magnitude of the diagonal will be diminished
continually, but never can be entirely exhausted ; and therefore into what-
ever number of equal parts the side of a square be divided, the diagonal
will never contain an exact number of such parts. Thus the diagonal and
side of a square having no common measure, cannot be exactly repre-

sented by any two numbers.
The term equimultiple in Geometry is to be understood of magnitudes

of the same kind, or of different kinds, taken an equal number of times, and
implies only a division of the magnitudes into the same number of equal
parts. Thus, if two given lines are trebled, the trebles of the lines are

equimultiples of the two lines : and if a given line and a given triangle be
trebled, the trebles of the line and triangle are equimultiples of the line

and triangle : as (vi. 1. fig.) the straight line HO and the triangle AHC
are equimultiples of the line BC and the triangle ABC: and in the same
manner, (vi. 33. fig.) the arc EN and the angle EHN are equimultiples of

the arc EF and the angle EHF.
Def. III. Ao'yOS icTTL OUO flt.yi.QlOV OflOytVCoV TJ KCtTd TTfjAlKOTJ/TCC TTjOOS

aWi)\a iroid o-xEo-ts. By this definition of ratio is to be understood the con-
ception of the mutual relation of two magnitudes cf the same kind, as two
straight lines, two angles, two surfaces, or two solids. To prevent any
misconception, Def. iv. lays down the criterion, whereby it may be known
what kinds of magnitudes can have a ratio to one another ; namely,
Aoyou iX£LV irpos dWrjXa /xtyidt] XiysTai, a ovvcitcli TroXXcnrXa.cna'^o/j.sva

dXXijXwv vTrzpix^ lv -
" Magnitudes are said to have a ratio to one another,

which, when they are multiplied, can exceed one another ;" in other words,
the magnitudes which are capable of mutual comparison must be of the
same kind. The former of the two terms is called the antecedent ; and the
latter, the consequent of the ratio. If the antecedent and consequent are

equal, the ratio is called a ratio of equality ; but if the antecedent be greater

or less than the consequent, the ratio is called a ratio of greater or of less

inequality. Care must be taken not to confound the expressions " ratio

of equality", and " equality of ratio :" the former is applied to the terms
of a ratio when they, the antecedent and consequent, are equal to one
another, but the latter, to two or more ratios, when they are equal.

Arithmetical ratio has been defined to be the relation which one number
bears to another with respect to quotity ; the comparison being made by
considering what multiple, part or parts, one number is of the other.
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An arithmetical ratio, therefore, is represented by the quotient which
arises from dividing the antecedent by the consequent of the ratio ; or by
the fraction which has the antecedent for its numerator and the consequent
for its denominator. Hence it will at once be obvious that the properties

of arithmetical ratios will be made to depend on the properties of fractions.

It must ever be borne in mind that the subject of Geometry is not
number, but the magnitude of lines, angles, surfaces, and solids ; and its

object is to demonstrate their properties by a comparison of their absolute
and relative magnitudes.

Also, in Geometry, multiplication is only a repeated addition of the same
magnitude ; and division is only a repeated subtraction, or the taking of a
less magnitude successively from a greater, until there be either no re-

mainder, or a remainder less than the magnitude which is successively

subtracted.

The Geometrical ratio of any two given magnitudes of the same kind
will obviously be represented by the magnitudes themselves ; thus, the
ratio of two lines is represented by the lengths of the lines themselves

j

and, in the same manner, the ratio of two angles, two surfaces, or two
solids, will be properly represented by the magnitudes themselves.

In the definition of ratio as given by Euclid, all reference to a third

magnitude of the same geometrical species, by means of which, to compare
the two, whose ratio is the subject of conception, has been carefully

avoided. The ratio ofthe two magnitudes is their relation one to the other,

without the intervention of any standard unit whatever, and all the pro-

positions demonstrated in the Fifth Book respecting the equality or ine-

quality oftwo or more ratios, are demonstrated independently of any know-
ledge of the exact numerical measures of the ratios ; and their generality

includes all ratios, whatever distinctions may be made, as to the terms of

them being commensurable or incommensurable.
In measuring any magnitude, it is obvious that a magnitude of the

same kind must be used ; but the ratio oftwo magnitudes may be measured
by every thing which has the property of quantity. Two straight lines

will measure the ratio oftwo triangles, or parallelograms (vi. 1. fig.) : and
two triangles, or two parallelograms will measure the ratio of two straight

Tines. It would manifestly be absurd to speak of the line as measuring
the triangle, or the triangle measuring the line. (See notes on Book n.)

The ratio of any two quantities depends on their relative and not their

absolute magnitudes ; and it is possible for the absolute magnitude of two
quantities to be changed, and their relative magnitude to continue the

same as before ; and thus, the same ratio may subsist between two given
magnitudes, and any other two of the same kind.

In this method of measuring Geometrical ratios, the measures of the

ratios are the same in number as the magnitudes themselves. It has how-
ever two advantages ; first, it enables us to pass from one kind of magni-
tude to another, and thus, independently of any numerical measure, to

institute a comparison between such magnitudes as cannot be directly

compared with one another : and secondly, the ratio of two magnitudes
of the same kind may be measured by two straight lines, which form a

simpler measure of ratios than any other kind of magnitude.
But the simplest method of all would be, to express the measure of the

ratio of two magnitudes by one ; but this cannot be done, unless the two
magnitudes are commensurable. If two lines AB, CD, one of which AB
contains 12 units of any length, and the other CD contains 4 units of the
same length ; then the ratio of the line AB to the line CD, is the same as the



ratio of the number 12 to 4. Thus, two numbers may represent the ratio

of two lines when the lines are commensurable. In the same manner, two
numbers may represent the ratio of two angles, two surfaces, or two solids.

Thus, the ratio of any two magnitudes of the same kind may be ex-
pressed by two numbers, when the magnitudes are commensurable. By
this means, the consideration of the ratio of two magnitudes is changed to

the consideration of the ratio of two numbers, and when one number is

divided by the other, the quotient will be a single number, or a fraction

,

which will be a measure of the ratio of the two numbers, and therefore of

the two quantities. If 12 be divided by 4, the quotient is 3, which mea-
sures the ratio of the two numbers 12 and 4. Again, if besides the ratio

of the lines AB and CD which contain 12 and 4 units respectively, we con-
sider two other lines EFvltA GH which contain 9 and 3 units respectively

;

it is obvious that the ratio of the line EF to GH is the same as the ratio

of the number 9 to the number 3. And the measure of the ratio of 9 to

3 is 3. That is, the numbers 9 and 3 have the same ratio as the numbers
12 and 4.

But this is a numerical measure of ratio, and can only be aj)plied strictly

when the antecedent and consequent are to one another as one number to

another.

And generally, if the two lines AB, CD contain a and b units respec-

tively, and q be the quotient which indicates the number of times the
number b is contained in a, then q is the measure of the ratio of the two
numbers a and b : and if EF and GH contain c and d units, and the number
d be contained q times in c : the number a has to b the same ratio as the
number c has to d.

This is the numerical definition of proportion, which is thus expressed

in Euclid's Elements, Book vn, definition 20. " Four numbers are pro-

portionals when the first is the same multipie of the second, or the same
part or parts of it, as the third is of the fourth." This definition of the

proportion of four numbers, leads at once to an equation :

for, since a contains 5, q times ;
- = q :

o

c
and since c contains d, q times ;

- = c :

d
Cb C

therefore - = - which is the fundamental equation upon which all the
o d

reasonings on the proportion of numbers depend.

If four numbers be proportionals, the product of the extremes is equa)

V> the product of the means.
For if a, b, c, d be proportionals, or a : o : : c I d.

™ a o
Then l = -.

J
b a

Multiply these equals by bd,

abd chd

or, ad = be,

that is, the product of the extremes is equal to the product of the means.

And conversely, If the product of the two extremes be equal to the
i

product of the two means, the four numbers are proportionals.

For if a, b, c, d, be four quantities,
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such, that ad = be,

a o
then dividing these equals by bd, therefore - = -

,

and a : b i: c : d,

or the first number has the same ratio to the second, as the third has to

the fourth.

If c — b
y
then ad = b* ; and conversely if ad = 53 : then - = -

.

These results are analogous to Props. 16 and 17 of the Sixth Book.
Sometimes a proportion is defined to be the equality of two ratios.

Def. viii declares the meaning of the term analogy or proportion. The
ratio of two lines, two angles, two surfaces or two solids, means nothing
more than their relative magnitude in contradistinction to their absolute
magnitudes ; and a similitude or likeness of ratios implies, at least, the two
ratios of the four magnitudes which constitute the analogy or proportion.

Def. ix states that a proportion consists in three terms at least; the
meaning of which is, that the second magnitude is repeated, being made
the consequent of the first, and the antecedent of the second ratio. It is

also obvious that when a proportion consists of three magnitudes, all three

are of the same kind. Def. vi appears only to be a further explanation
of what is implied in Def. viii.

Def. v. Proportion having been denned to be the similitude of ratios,

or more properly, the equality or identity of ratios, the fifth definition lays

down a criterion by which two ratios may be knoAvn to be equal, or four

magnitudes proportionals, without involving any inquiry respecting the

four quantities, whether the antecedents of the ratios contain or are con-
tained in their consequents exactly ; or Avhether there are any magnitudes
which measure the terms of the two ratios. The criterion only requires,

that the relation of the equimultiples expressed should hold good, not
merely for any particular multiples, as the doubles or trebles, but for any
multiples whatever, whether large or small.

This criterion of proportion may be applied to all Geometrical magni-
tudes which can be multiplied, that is, to ail which can be doubled, trebled,

quadrupled, &c. But it must be borne in mind, that this criterion does
not exhibit a definite measure for either of the two ratios which constitute

the proportion, but only, an undetermined measure for the sameness or

equality of the two ratios. The nature of the proportion of Geometrical
magnitudes neither requires nor admits of a numerical measure of either

of the two ratios, for this would be to suppose that all magnitudes are

commensurable. Though we know not the definite measure of either of

the ratios, further than that they are both equal, and one may be taken as

the measure of the other, yet particular conclusions may be arrived at by
this method : for by the test of proportionality here laid down, it can be
proved that one magnitude is greater than, equal to, or less than another :

that a third proportional can be found to two, and a fourth proportional
to three straight lines, also that a mean proportional can be found be-
tween two straight lines : and further, that which is here stated of
straight lines may be extended to other Geometrical magnitudes.

The fifth definition is that of equal ratios. The definition of ratio itself

(defs. 3, 4) contains no criterion by which one ratio may be known to be
equal to another ratio : analogous to that by which one magnitude is

known to be equal to another magnitude (Euc. i. Ax. 8). The preceding
definitions (3, 4) only restrict the conception of ratio within certain limits,
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but lay down no test for comparison, or the deduction of properties. All

Euclid's reasonings were to turn upon this comparison of ratios, and
hence it was competent to lay down a criterion of equality and inequality

of two ratios between two pairs of magnitudes. In short, his effective de-

finition is a definition of proportionals.

The precision with which this definition is expressed, considering the

number of conditions involved in it, is remarkable. Like all complete
definitions the terms (the subject and predicate) are convertible : that is.

(a) If four magnitudes be proportionals, and any equimultiples be
taken as prescribed, they shall have the specified relations with respect

to " greater, greater," &c.

(b) If of four magnitudes, two and two of the same Geometrical
Species, it can be shew*., that the prescribed equimultiples being taken,

the conditions under which those magnitudes exist, must be such as to

fulfil the criterion " greater, greater, &c." ; then these four magnitudes
shall be proportionals.

It may be remarked, that the cases in which the second part of the
criterion (" equal, equal") can be fulfilled, are comparatively few: namely
those in which the given magnitudes, whose ratio is under consideration,

are both exact multiples of some third magnitude—or those which are

called commensurable. When this, however, is fulfilled, the other two will

be fulfilled as a consequence of this. When this is not the case, or the

magnitudes are incommensurable, the other two criteria determine the pro-

portionality. However, when no hypothesis respecting commensur-
ability is involved, the contemporaneous existence of the three cases

(" greater, greater ; equal, equal ; less, less") must be deduced from the
hypothetical conditions under which the magnitudes exist, to render the
criterion valid.

With respect to this test or criterion of the proportionality of four
magnitudes, it has been objected, that it is utterly impossible to make
trial of all the possible equimultiples of the first and third magnitudes,
and also of the second and fourth. It may be replied, that the point in

question is not determined by making such trials, but by shewing from
the nature of the magnitudes, that whatever be the multipliers, if the
multiple of the first exceeds the multiple of the second magnitude, the
multiple of the third will exceed the multiple of the fourth magnitude,
and if equal, will be equal ; and if less, will be less, in any case which
may be taken.

The Arithmetical definition of proportion in Book vn, Def. 20, even
if it were equally general with the Geometrical definition in Book v, Def.
5, is by no means universally applicable to the subject of Geometrical
magnitudes. The Geometrical criterion is founded on multiplication,

which is always possible. When the magnitudes are commensurable, the
multiples of the first and second may be equal or unequal ; but when the
magnitudes are incommensurable, any multiples whatever of the first and
second must be unequal ; but the Arithmetical criterion of proportion is

founded on division, which is not always possible. Euclid has not shewn
in Book v, how to take any part of a line or other magnitude, or that the
two terms of a ratio have a common measure, and therefore the numerical
definition could not be strictly applied, even in the limited way in which
it may be applied.

Number and Magnitude do not correspond in all their relations ; and
hence the distinction between Geometrical ratio and Arithmetical ratio

;

the former is a comparision kuto, TniXiKortiTa, according to quantity, but
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the latter, according to quotity. The former gives an undetermined,
though, definite measure, in magnitudes ; but the latter attempts to

give the exact value in numbers.
The fifth book exhibits no method whereby two magnitudes may be

determined to be commensurable, and the Geometrical conclusions de-

duced from the multiples of magnitudes are too general to furnish a

numerical measure of ratios, being all independent of the commensura-
bility or incommensurability of the magnitudes themselves.

It is the numerical ratio of two magnitudes which will more certainly

discover whether they are commensurable or incommensurable, anil

hence, recourse must be had to the forms and properties of numbers.
All numbers and fractions are either rational or irrational. It has been
seen that rational numbers and fractions can express the ratios of Geo-
metrical magnitudes, when they are commensurable. Similar relations

of incommensurable magnitudes may be expressed by irrational numbers,
if the Algebraical expressions for such numbers may be assumed and
employed in the same manner as rational numbers. The irrational

expressions being considered the exact and definite, though undeter-
mined, values of the ratios, to which a series of rational numbers may
successively approximate.
Though two incommensurable magnitudes have not an assignablenume-

rical ratio to one another, yet they have a certain definite ratio to one
another, and two other magnitudes may have the same ratio as the first

two : and it will be found, that, when reference is made to the numerical
value of the ratios of four incommensurable magnitudes, the same irra-

tional number appears in the two ratios.

The sides and diagonals of squares can be shewn to be proportionals,

and though the ratio of the side to the diagonal is represented Geome-
trically by the two lines which form the side and the diagonal, there is

no rational number or fraction which will measure exactly their ratio.

If the side of a square contain a units, the ratio of the diagonal to the
side is numerically as V2 to 1 ; and if the side of another square contain
b units, the ratio of the diagonal to the side will be found to be in the
ratio of V 2 to 1. Again, the two parts of any number of lines which
may be divided in extreme and mean ratio will be found to be respectively
in the ratio of the irrational number ^ 5 — 1 to 3 — V5. Also, the
ratios of the diagonals of cubes to the diagonals of one of the faces will

be found to be in the irrational or incommensurate ratio of V 3 to %/ 2.

Thus it will be found that the ratios of all incommensurable magni-
tudes which are proportionals do involve the same irrational numbers,
and these may be used as the numerical measures of ratios in the same
manner as rational numbers and fractions.

It is not however to such enquiries, nor to the ratios of magnitudes
when expressed as rational or irrational numbers, that Euclid's doctrine
of proportion is legitimately directed. There is no enquiry into what a
ratio is in numbers, but whether in diagrams formed according to assigned
conditions, the ratios between certain parts of the one are the same as
the ratios between corresponding parts of the other. Thus, with respect
to any two squares, the question that properly belongs to pure Geometry
is :—whether the diagonals of two squares have the same ratio as the
sides of the squares ? Or whether the side of one square has to its

diagonal, the same ratio as the side of the other square has to its diagonal ?

Or again, whether in Euc. vi. 2, when BC and BE are parallel, the line
BD has to the line DJ, the same ratio that the line CE has to the line
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AE ? There is no purpose on the pait of Euclid, to assign either of these
ratios in members: but only to prove that their universal sameness is

inevitably a consequence of the original conditions according to which
the diagrams were constituted. There is, consequently, no introduction
of the idea of incommensurables : and indeed, with such an object as

Euclid had in view, the simple mention of them would have been at least

irrelevant and superfluous. If however it be attempted to apply numeri-
cal considerations to pure geometrical investigations, incommensurables
will soon be apparent, and difficulties will arise which were not foreseen.

Euclid, however, effects his demonstrations without creating this arti.-

ficial difficulty, or even recognising its existence. Had he assumed a

standard unit of length, he would have involved the subject in numeri-
cal considerations ; and entailed upon the subject of Geometry the
almost insuperable difficulties which attach to all such methods.

It cannot, however, be too strongly or too frequently impressed upon
the learner's mind, that all Euclid's reasonings are independent of the
numerical expositions of the magnitudes concerned. That the enquiry
as to what numerical function any magnitude is of another, belongs not
to Pure Geometry, but to another Science. The consideration of any
intermediate standard unit does not enter into pure Geometry; into

Algebraic Geometry it essentially enters, and indeed constitutes the funda-
mental idea. The former is wholly free from numerical considerations

;

the latter is entirely dependent upon them.
Def. vn is analogous to Def. 5, and lays down the criterion whereby

the ratio of two magnitudes of the same kind may be known to be greater

or less than the ratio of two other magnitudes of the same kind.

Def. xi includes Def. x. as three magnitudes may be continued pro-

portionals, as well as four or more than four. In continued proportionals,

all the terms except the first and last, are made successively the conse-

quent of one ratio, and the antecedent of the next ; whereas in other

proportionals this is not the case.

A series of numbers or Algebraical quantities in continued proportion,

is called a Geometrical progression, from the analogy they bear to a series

of Geometrical magnitudes in continued proportion.

Def. a. The term compound ratio was devised for the purpose of

avoiding circumlocution, and no difficulty can arise in the use of it, if

its exact meaning be strictly attended to.

With respect to the Geometrical measures of compound ratios, three
straight lines may measure the ratio of four, as in Prop. 23, Book vi.

For Kto L measures the ratio of EC to CG, and L to M measures the
ratio of DC to CE\ and the ratio of Kto Mis that which is said to be,

compounded of the ratios of K to L, and L to M, which is the same as the
ratio which is compounded of the ratios of the sides ofthe parallelograms.

Both duplicate and triplicate ratio are species of compound ratio.

Duplicate ratio is a ratio compounded of two equal ratios ; and in the

case of three magnitudes which are continued proportionals, means the
ratio of the first to a third proportional to the first and second.

Triplicate ratio, in the same manner, is a ratio compounded of three

equal ratios ; and in the case of four magnitudes which are continued
proportionals, the triplicate ratio of the first to the second means the

ratio of the first to a fourth proportional to the first, second, and third

magnitudes. Instances of the composition of three ratios, and of tripli-

cate ratio, will be found in the eleventh and twelfth books.

The product of the fractions which represent or measure the ratios
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of numbers, corresponds to the composition of Geometrical ratios of

magnitudes.
It has been shewn that the ratio of two numbers is represented by a

fraction whereof the numerator is the antecedent, and the denominator
the consequent of the ratio ; and if the antecedents of two ratios be
multiplied together, as also the consequents, the new ratio thus formed
is said to be compounded of these two ratios ; and in the same manner,
if there be more than two. It is also obvious, that the ratio compounded
of two equal ratios is equal to the ratio of the squares of one of the ante-

cedents to its consequent ; also when there are three equal ratios, the
/atio compounded of the three ratios is equal to the ratio of the cubes of

any one of the antecedents to its consequent. And further, it may be
observed, that when several numbers are continued proportionals, the
ratio of the first to the last is equal to the ratio of the product of all the
antecedents to the product of all the consequents.

It may be here remarked, that, though the constructions of the pro-
positions in Book v are exhibited by straight lines, the enunciations are

expressed of magnitude in general, and are equally true of angles,

triangles, parallelograms, arcs, sectors, &c.

The two following axioms may be added to the four Euclid has given.

Ax. 5. A part of a greater magnitude is greater than the same part

of a less magnitude.
Ax. 6. That magnitude of which any part is greater than the same

part of another, is greater than that other magnitude.
The learner must not forget that the capital letters, used generally by

Euclid in the demonstrations of the fifth Book, represent the magnitudes,

not any numerical or Algebraical measures of them : sometimes however
the magnitude of a line is represented in the usual way by two letters

which are placed at the extremities of the line.

Prop. i. Algebraically.

Let each of the magnitudes A, B, C
}
&c. be equimultiples of as many

a, b, c, &c.

that is, let A = m times a = ma,

B — m times b = nib,

C = m times c = mc, &c.

First, if there be two magnitudes equimultiples of two others,

Then A + B = ma + mb = m (a 4- b) = m times (a -f b),

Hence A + B is the same multiple of (a + b), as A is of a, or B of b.

Secondly, if there be three magnitudes equimultiples of three others,

then A + B + C = ma + mb + mc = m(a + b + c)

= m times (a + b + c),

Hence A + B + C is the same multiple of (a + b + c);

as A is of a, B of b, and C of c.

Similarly, if there were four, or any number of magnitudes.
Therefore, if any number of magnitudes be equimultiples of as many,

each of each ; what multiple soever, any one is of its part, the same
multiple shall the first magnitudes be of all the other.

Prop. ii. Algebraically.
Let A

x
the first magnitude, be the same multiple of a

% the second,
as A3 the third, is of a, the fourth ; and Ab the fifth the same multiple

of a
g
the second, as A G the sixth, is of a* the fourth^

m2
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That isj let A
x
= m times a

i
= ma2>

A* = in times o4 = maif

Af, = 11 times aa = na
s ,

A6 = n times a4
= nav

Tlienby addition, A
i + Ab = ma2 + na2 = {m + n) o2 = (m+ri) times a„

and As + A6
= ms

4 + wo
4
= (m+ri) a

i
= (m+ri) times av

Therefore A x + A
d
is the same multiple of a2 , as A3 + A

c>
is of a

4
.

That is, if the first magnitude be the same multiple of the second, as

the third is of the fourth, &c.

Coit. If there be any number of magnitudes Av Ag , A if &c. multiples

of another a, such that A
l
= ma, A

2
= na, A3

= pa, &c.

And as many others Bv Be , Bs , &c. the same multiples of another b
t

such that B
x
— mb, B%

= nb, Ba = pb, Sec.

Then by addition, A1 + A
2 + A3 + &c. = ma + na + pa + &c.

= (m + n + p + &c.) a = (>» + m+ p + &c.) times a

:

and B
l + B

t + B
s + See. = mb + nb + pb + &c. = (m + n + p + &c.) b

= (m + n + p + &c.) times b :

that is A
l + A2 + As + &c. is the same multiple of a that

B
x
+ B.-, + B

3 + &c. is of b.

Prop. in. Algebraically.

Let A
x
the first magnitude, be the same multiple of o

8 the second,

as A3 the third, is of a4 the fourth,

that is, let Ax
= in times a

3
= mav

and -4 3 = m times a
i
= mat .

If these equals be each taken n times,

then n

A

x
= mna2

= mn times a
2 ,

and nA
%
= m?ia

i
= mw times a

4,

or n^4j, w^4 3 each contain av a
i
respectively mn times.

Wherefore nA
x , nA3 the equimultiples of the first and third, are

respectively equimultiples of a
2
and «.

t
, the second and fourth.

Prop. iv. Algebraically.

Let Av a
e , A3, aA , be proportionals according to the Algebraical

definition

:

that is, let A
x

: a, : : A s : a
t

then —l = -^
,

a
t

a
K

multiply these equals by —
, m and n being any integers,

rnA
x

mA 3

naa na.
'

That is, if the first of four magnitudes has the same ratio to the

second which the third has to the fourth ; then any equimultiples what-
ever of the first and third shall have the same ratio to any equimultiples

of the second and fourth.
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The Corollary is contained in the proposition itself

:

for if n be unity, then mA
x

: a2 :: mA3 : a,. :

and if m be unity, also ^, : na2 :: //3 : na^.

Prop. v. Algebraically.

Let A
x
be the same multiple of aXf

that ^2 a part of A\, is of a
2 , a part of ffj.

Then A
x
— A

%
is the same multiple of a

x
— a

2
as ^ is of a

v
:

For let ^! = m times a
s
= »id„

and At = m times <7 S = ma2,

then ^ — A2
= 772^ — wa2

= 772 (% — a
2)
= m times (otj — «3),

that is A1
— ^2 is the the same multiple of (a

x
- a

2)
as ^

:
is of av

Prop. vi. Algebraically.

Let Av At
be equimultiples respectively of a

x , a2 two others,

that is, let Ax
= m times o

x
= mav

A 2
= t?z times a2

= 7/m2,

Also if B
x
a part of A

x
= ?i times a

x
= na

x ,

and J5
2
a part of A

2
= w times f?2 = wa

8 .

Then by taking equals from equals,

.*. A
x
— B

x
= ma

1
- na

x
= (m — n) a

i
= (m — «) times a

lt

y/2
— B

2
= »ia

2
— na2

= (?n — n) a2
= {m — ») times a

2 :

that is, the remainders A
x
— Bv A2

— B2 are equimultiples of a
x , a 2t

respectively.

And if m — n = 1, then A
x
— B

x
= av and ^/

2
— B2

— a2 :

or the remainders are equal to av a
2
respectively.

Prop. A. Algebraically.

Let Av av A3 , a
4 be proportionals, 5

or A
y

: a
2 :: A

3
: a

4,

,, ^4i A 3
then —- = — •

a2 a4

A A
And since the fraction —• is equal to — , the following relations

sly can subsist between A
x
and a

2 ; and between A
3 and a

4 .

First, if A
{
be greater than a2 ; then yl

3 is also greater than a4 i

Secondly, if A
x
be equal to a

2 ; then A
3
is also equal to a4 :

Thirdly, if A
x
be less than a2 ; then A3 is also less than «

4
:

A A
Otherwise, the fraction — could not be equal to the fraction — .

Prop. B. Algebraically.

Let A
xy
a
2, A3 , a4

be proportionals,

or A
x

: a
2

:: A2 1 av
Then shall a

2
: A

x
: 1 «

4
: A% 9

For since A
x

: a2 : : J 3 : rc
4 f
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and if 1 be divided by each of these equals,

i
. f*i _ i i. d!*

J- T — »- ~ ~~ ?
a
2

g4

01
J,

=
:v

and therefore at : Ax :: aK \ A9 .

Prop. C. " This is frequently made use ofby geometers, and is necessary

to the 5th and 6th Propositions of the 10th Book. Clavius, in his notes

subjoined to the 8th def. of Book 5, demonstrates it only in numbers, by
help of some of the propositions of the 7th Book ; in order to demonstrate
the property contained in the oth definition of the 5th Book, when applied

to numbers, from the property of proportionals contained in the 20th def.

of the 7th Book : and most ofthe commentators judge it difficult to prove
that four magnitudes which are proportionals according to the 20th def.

of the 7th Book, are also proportionals according to the 5th def. of the

5th Book. But this is easily made out as follows :

First, if A, B, C, D, be four magnitudes, such that A is the same
multiple, or the same part of B, which C is of D :

Then A, B, C, D, are proportionals

:

this is demonstrated in proposition (c).

Secondly, if AB contain the same parts of CD that EF does of GH
;

in this case likewise AB is to CD, as EF to GH.

Let Cifbe a part of CD, and GL the same part of GH;
and let AB be the same multiple of CK, that EF is of GL :

therefore, by Prop, c, of Book v, AB is to CK, as EF to GL :

and CD, GH, are equimultiples of CK, GL, the second and fourth ;

wherefore, by Cor. Prop. 4, Book v, AB is to CD, as EF to GH.
And iffour magnitudes be proportionals according to the 5th def. ofBookv,

they are also proportionals according to the 20th def. of Book vn,
Pirst, if A be to B, as C to D ;

then if A be any multiple or part of B, C is the same multiple or

part of D, by Prop, d, Book v.

Next, if AB be to CD, as EF to GH :

then if AB contain any part of CD, EF contains the same part of GH

:

A B E F

for let CKbe a part of CD, and GL the same part of GH,
and let AB be a multiple of CK:
EF is the same multiple of GL :

take M the same multiple of GL that AB is of CK;
therefore, by Prop, c, Book v, AB is to CK, as AT to GL :

and CD, GH, are equimultiples of CK, GL ;

wherefore, by Cor. Prop. 4, Book v, AB is to CD, as M to GH.

And, by the hypothesis, AB is to CD, as EF to GH;
therefore M is equal to EF by Prop. 9, Book v,

and consequently, EF is the same multiple of GL that AB is of CKJ
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This is the method by which Simson shews that the Geometrical
definition of proportion is a consequence of the Arithmetical definition,

and conversely.

It may however be shewn by employing the equation — = - , and taking

ma, mc any equimultiples of a and c the first and third, and nb, nd any
equimultiples of b and d the second and fourth.

And conversely, it may be shewn ex absurdo, that if four quantities

are proportionals according to the fifth definition of the fifth book of

Euclid, they are also proportionals according to the Algebraical definition.

The student must however bear in mind, that the Algebraical defi-

nition is not equally applicable to the Geometrical demonstrations con-
tained in the sixth, eleventh, and twelfth Books of Euclid, where the
Geometrical definition is employed. It has been before remarked, that Geo-
metry is the science of magnitude and not of number ; and though a sum and
a difference of two magnitudes can be represented Geometrically, as well
as a multiple of any given magnitude, there is no method in Geometry
whereby the quotient of two magnitudes of the same kind can be ex-
pressed. The idea of a quotient is entirely foreign to the principles of

the Fifth Book, as are also any distinctions of magnitudes as being com-
mensurable or incommensurable. As Euclid in Books vn—x has treated

of the properties of proportion according to the Arithmetical definition

and of their application to Geometrical magnitudes ; there can be no
doubt that his intention was to exclude all reference to numerical mea-
sures and quotients in his treatment of the doctrine of proportion in the
Fifth Book ; and in his applications of that doctrine in the sixth, eleventh
and twelfth books of the Elements.

Prop. C. Algebraically.

Let Av a
2 , A 3 , a4 be four magnitudes.

First let A
x
= ma

2
and J3

= ma,

:

Then A
x

: a3 :: A3 : av

For since A
x
= mav .*. in = ~ ;

A
and A* = ma, .'. m = —

;

Hence — =* —

,

a'i a
i

and A
x

: a% : : A
z : av

Secondlv. Let A, = — a„ and A 3 — — a. im m

Then, as before, — = —
, and —- = —

|
a
%

m a4
m

Hence — = —- »

a
2 ai

and A
x

: a
%

: : A3 : a4 .

Prop. D. Algebraically.

Let A

i

9
<7
S, Av a

t
be proportionals,

or A^i^.i ^ *-«.!.



248 euclid's elements.

First let A
x
be a multiple of av or A

x
= m times o 2 = #u?3

Then shall A
3
= ma

4 ,

For since A
x

: a
g

:: A3 : «.,

but since ^ = ma,,

. . — =
"

—
- , orm=-,

and ^3 = ma
4 .

Therefore tlie third A
z is the same multiple of a

t
the fourth.

Secondly. If A
x

1 1
— a.

l-or since —= = — >

, , i
! ^i i

and A, = —a , . . — = —

,

m ~ a 2 m

•

A
* l

* a
l

t

'
m
— = —

, and Ao — —fft :

o
i

m m
wherefore, the third A

3 is the same part of the fourth a % .

Prop. yii. is so obvious that it may be considered axiomatic. Also
Prop. viii. and Prop. ix. are so simple and obvious, as not to require
algebraical proof.

Prop. x. Algebraically.
Let A

x
have a greater ratio to a, than A 3

has to a.

Then A
x
> A

3 .

For the ratio of A
x
to a is represented by —

,

A
and the ratio of A

3
to a is represented by —

,

A A,
and since — > —-

;

a a

It follows that A
x
> A.,.

Secondly. Let a have to A
3
a greater ratio than a has to A

x
,

Then A
3
< A

t .

For the ratio of a : A, is represented by — ,A
s

a
and the ratio of a : A. is represented by -r ,

and since —- > — ,A
3 A

x

dividing these unequals by «,

1 1

A
%

A
i

and multiplying these unequals by A
X
,A#

.'. A
x
> As ,

or A3 < Av
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Prop. xi. Algebraically.
Let the ratio ofA

x
: a2 be the same as the ratio of A3 : a4,

and the ratio of A3 : a4 be the same as the ratio of Ab : a9 .

Then the ratio ofA
x

: a2
shall be the same as the ratio of A-3 : <z

6 .

For since A x : a3 : : A3 : a
tf

Ax _Ai
' ' a2 ^4

and since A3 : a
i

: : A-a : a&

Hence -*= -5

,

and ^ : a
2 : : ^. : as.

Prop. xii. Algebraically.

Let Au a2, A3, a4 , ^/
5 , a

6 be proportionals,
so that Ax : a2 : : A3 : a4 : : ,45 : aB .

Then shall A
x

: a2 :: A
x + Aa + A

b : a
2 + c4 + a

6 .

For since .4, : a
2

: : ^4 3 : a4 :: A ; aw

• dl = d* =
A
±

a
2

<iA aa

~l= A
1

A
x

A3

a2 a4
'

\ Aa^ = a
2
Aw

A
x

A b— t

a % Co
.*. A^cio = tf

2
.?5?

also A
x
a2
= a2A x

.

Hence A
x
(a2 -f «4 + «

6)
= «

2 O^i + ^3 + A &)' ^Y addition,

and dividing these equals by a2
(a2 + a4 -f- a6 ),

A _ 4, + ^ 3 + ^
5 _

a
2

"~ a2 + a, + a6

and A
x

: o
2

: : A
x
+ Ai + A b : a

2 + a 4 + a
6 .

Prop. xiii. Algebraically.

Let A
x , a2

,A
3 , aA , Ab , a

fi
, be six magnitudes, such that A

x
: «

2
:: A 3 ; a.

but that the ratio of A 3 : a
4
is greater than the ratio of Ab : a 6 .

Then the ratio of A
x

: a2 shall be greater than the ratio of A b : av

For since .4, : a2 : : ^4, : a4
.'. — = —

,

o
a a4

but since A 3 : a, > ^1 5 : a, .*. — > —

.

a 4 a&
A

x
A *Hence —- > —

.

That is, the ratio of A
x

: a
2
is greater than the ratio of Au : o& ,

Prop. xiv. Algebraically.

Let A v a.2 , A 3 , a4 be proportionals,

Then if A
x
> A3 , then a2 > a4, and if equal, equal ; and if less, less.

For since A
x

: a2 : : A3 : a^

^i = d*.

M 5
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Multiply these equals by -~
;A3

A L a2

A3 a4
*

and because these fractions are always equal,
if A j be > Av then a

2
must be greater than a4,

for if a2 were not greater than a4,

a A
the fraction J could not be equal to —

-

1

;

which would be contrary to the hypothesis.

In the same manner,
if A x be = A3 , then a2 must be equal to a4,

and if Ax be < A3t a2
must be less than a4 .

Hence, therefore, if &c.
Prop. xv. Algebraically.

Let A v a2 be any magnitudes of the same kind,

Then A
x

: a2 :: mA : ma2 ;

mA
l
and ma2 being any equimultiples of A

x
and a2 .

v A
x

A
iFor —1

? = —
,

er2 a2

and since the numerator and denominator of a fraction may be mul-
tiplied by the same number without altering the value of the fraction,

Ax
mA

y

a2 ma2

and A x : o2 :: mA\ : mav
Prop. xvi. Algebraically.

Let Av av A3 , a4 be four magnitudes of the same kind, which are

proportionals,

Ax : a2 : : A 3 : a4.

Then these shall be proportionals when taken alternately, that is,

Ail A3
'.: a2 : ct 4 .

For since Ai : a3 : : ^43 : a4 ,

then -' = —3
.

c2 «4

Multiply these equals by -~
,

. A _ f3

and -4j : A3 : : «3 : a4.

Prop. xvn. Algebraically.

Let A
x + av av A3 + a4 , a4 be proportionals}

then A
x , a2 , As , at shall be proportionals.

For since A
x + a2 : a2 : : A3 + ak : a4

a8 o4

or ± + 1 «£'+!,-
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and taking 1 from each of these equals,

. -"1 _ ""3

and Ai : a* :: A a : &},

Prop, xviii, is the converse of Prop. xvn.
The following is Euclid's indirect demonstration.

Let AE, EB, CF, FD be proportionals,

that is, as AE to EB, so let CF be to FD :

then these shall be proportionals also when taken jointly
;

that is, as AB to BE, so shall CD be to DF.

A E B

C Q F D

For if the ratio ofAB to BE be not the same as the ratio of CD to DF;
the ratio of AB to J5£ is either greater than, or less than the ratio of

CD to DF.
First, let AB have to BE a less ratio than CD has to DF

;

and let DQ be taken so that AB has to BE the same ratio as CD to DQ:
and since magnitudes when taken jointly are proportionals,

they are also proportionals when taken separately
;

(v. 17.)

therefore AE has to EB the same ratio as CQ to QD ;

but, by the hypothesis, AE has to EB the same ratio as CF to FD ;

therefore the ratio of CQ to QD is the same as the ratio of CF to FD. (v. 1 1 .)

And when four magnitudes are proportionals, if the first be greater than'

the second, the third is greater than the fourth ; and if equal, equal ; and
if less, less

;
(v. 14.) but CQ is less than CF,
therefore QD is less than FD ; which is absurd.

Wherefore the ratio of AB to BE is not less than the ratio of CD to DF;
that is, AB has the same ratio to BE as CD has to DF.

Secondly. By a similar mode of reasoning, it may likewise be shewn,
that AB has the same ratio to BE as CD has to DF, if AB be assumed to

have to BE a greater ratio than CD has to DF.
Prop, xviii. Algebraically.

Let Ax : a2 :: A3 : a
A

.

Then A1 + a
2

: a2 : : A 3 + a
x

: a
4 .

For since A\ : a9 : : Az : a4,

e,

and adding 1 to each of these equals

5

A
x
+a9

Gg «4

or,
at Ui

and j4
x + a2 : a

z
: : A

3 + a4 : a4.

Prop. xix. Algebraically.
Let the whole A

x
have the same ratio to the whole A%%

as a\ taken from the first, is to a
%
taken from the second,

that is, let Ax \ A2 : : ax : av
Then A x

— ax : A% — a^ : : A.\ : A2.
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3r since A\ : A 2 : : a
l : a2i

= -1

.

«2

Multiplying these equals by —•»

jlj ^3 ©i Ai
•*• "7" * — = I" ~T~ »

A Jo
or

°i do

and subtracting 1 from each of these equals,

^i ^3 1
- 1 == — - 1,

«i a
2

A
\
~ a

l
A.2 — a2

a, cio

and multiplying these tquaib uy - ,A
2
— a

%

. A -0, °\

" ^ — Cln
-«>'

but
A,

or,,

A^ — a,
x _ A

x

' A
2
— a

2
A 2

and i4, - a, : J 2
— a2 :: A

l
: AT

Cor. If A
x

: ^
2

: : a
v

: a^

Then .4, — a
x

: A 2
— a3 :: ax : «2, is found proved in the preceding

process.

Prop. E. Algebraically.

Let A
x

'. «a : : A 3 : a lt

Then shall A
x

: A
x
— o,

2 : : A 3 : A 3
— c-v

For since A , : «
2 : : y/3 : a4 ,

.
A, - A *

a„ «4

subtracting I from each of tbese equals,

^-1 -^-l,
a, « 4

or
A

}
- a

3
//

3
- a4

a3 «4

4 ^3
but -i

a2 a4

iding the latter by the former of these equals

. *\ . ^! - <H ^3 .
A3

— a i

<h a"2 a4 a
4

'

A*x Oj At o
4

ox — x A\-H fl-
4 A - V
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or -j^-1— = -j—3-
;

A] •- a2 A z
— a4

and A
x : A

x
— a^ : : A3 : ^43 — a4.

Prop. xx. Algebraically.

Let ylj, A 2) A 3 be three magnitudes, and a lt a.
2 , a3 , other three,

such that A
l : A2 : : a

x : g^,

and A2 : A3 : : a2 : %

:

if .4! > ^ 3 , then shall a
x > a3 ,

and if equal, equal ; and if less, less.

*. A
i

a
\Mnce A

x
: A 2 : : a

x
: On, .-.—=-,

.... A, «9
also since A* : A? ::«->: Og, .*. -^ = —

"

,

and multiplying these equals,

A 2 A Z <H «3

or — = —
^3 «3

and since the fraction —- is equal to — *,

A z "i

and that A
1 > A 3 :

It follows that a
x
is . > a3 .

In the same way it may be shewn

that if A
x
= A 3 , then a

x
= a3 ; and if A

x
be < ^4

3 , then «j < %.

Prop. xxi. Algebraically.

Let A lt A2i A 3i be three magnitudes,
and ah a2 , az three others,

such that A
x : A 2 : : tf2 : a3>

and -42 : ^43 : : a
t

: a2 .

If A
K
> ^4

3 , then shall a
{
> a3 , and if equal, equal ; and if less, less.

"For since A
x

: A 2 : : a-, : a3 ,
.".
A ^3

A,

ana since A 2 : A 3 : : a
x

: c2 , . . — =
^4i tf-3 "3

Multiplying these equals,

A Ao do »i
~r x = — X
A 2 A z «3 »2

A
}

a
l

or
Az a

3

and since the fraction -— is equal to —

.

A 3
^ Og'

and that A
x > A

3 .

Tt follows that also a
x > Og.

Similarly, it may be shewn, that if A
x
= A3, then Oj = as

',

and if -4j < A3 , also <?i < a^.
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Prop. xxii. Algebraically.

Let A lt Ao, A3 be three magnitudes,

and a15 Oo, 03 other three,

such that Al : A2 : : a^ : c^,

and ^i2 : A3 : : 02 : 03.

Then shall ^4
:

: A3 : : «
x : Og.

For since A
1

1 A2 :: a^: a*,, '. — —.—
A2 cu>

and since A : A3 : : a3 : a3 ,
.*. —2 = —A °3

Multiply these equals,

hAi A2 d\
(fy

J%2 Ji.^ On flo

or

and Ax : A3 :: a
l

: <%.

Next if there be four magnitudes, and other four such,

A x
'. A 2

',

', <x
x

'. ct29

A2 : Az :: a3 : a3 ,

^43 : A± : : o.3 : a4 .

Then shall ^ : A± : : fy : a4 .

For since -4
X

: ^.2 : : a
x

: 0%, .*. —^ = -
,

43 a^

^2 : -^3

^2

Az 03
^3 : -<44 : : 03 : <z4 , . AA (?4

Multiplying these equals,

Ai A Ao an On Os\

*• ~r x ~f x t — - x ~ x »A2 A3 A± »2 °3 a4

A «1
or —- = —

,

and A
x : A4 :: ax : a-,

and similarly, if there were more than four magnitudes.

Prop, xxiij.. Algebraically.

Let A x , An, Az be three magnitudes,

and <?!, cjo, «3 other three,

such that Ax : A2 : : 02 : <%

and A2 i A3 i: a^ : a^.

Then shall Ax : A3 :: a^ : a^.

For since A x : A2 \: c^^ <h* •"• —r =
3

and since A 2 ; A3 \: Oj 1 a?, .\ -j- = -
/i

3 a2
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Multiplying these equals,

Jx Ao a*>

Az Ai Og

A
{

a
x

or -- = —
,Az a3

and A l : A3 : : aa : «3.

If there were four magnitudes, and other four,

such that Ax : A2 : i 03 : a4 ,

u43 : ^4 3 : : a2 : a3 ,

A3 : ^44 : : ax :%.
Then shall also A

x
\ A±\ : ax : a4 ,

For since ^ : -<42 : • «3 • «4> •*•
A
A3

=

A2 : A3
1

'. a2 : a$
t Az

=
«3

A3 : A i 1 : ax 1 do
A
A

Multiplying these equals,

A ^2 ^3 _ «3 v
• * "T~ "J~ ~T" — — *

J\% A 3 A± 0,4

— X
«1

or — = —
,

Ai a4
.*. Ai

' Ai
'

'• «i : «4i

and similarly, if there be more than four magnitudes.
Prop. xxrv. Algebraically.

Let A x : a* : : A3 : a4,

and ^4
5 : a2 :: ^4

6 : a4,

Then shall A
x + A t \ a^w A3 + At

: a4 .

For since A
x

: a2 :: -43 : «4 , .". ~ = —-,
<h «4

^4 A
and since A : <h '• s ^e ; Hi •*. — = — •

03 a4

Divide the former by the latter of these equals,

a2 Oo ®4 °4

^ «2 ^ 3 a4
or — x — = *- x -

,
Co A% a4 u*

8

adding 1 to each of these equals,

or
A

i + A
> ~ Az + Ao

A, A
t,
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, A Aand -5 = -£

Multiply these equals together,

.
A

i + Ab d± _ A
* + A A

A
s a

2
~ A 6 a,

A
x + A b _ A3 + A

or
a.

and .*. A x + A b : a2 : : Az + A6 ; a&
Cor. 1. Similarly may be shewn, that

A
x
— Ab : Oj : : A z

— At : a
4 .

Prop. xxv. Algebraically.

Let -Ai : a2 : : A 3 : a
iy

and let A
x
be the greatest, and consequently a

i
the 1 aat.

Then shall ^ + a4 > a2 + .4 3 .

Since ^ : a2 :: vl3 : a
1}

^x __ ^3

a.2 a/

Multiply these equals by ^ ,

^3
A fTo

• • A =
" a4

'

subtract 1 from each of these equals,

. A Go
- 1 = - - 1,"A' <*i

A - A a2
— a4or -

A «1 '

Multiplying these equals by -
CT2 - «

J

. A - A ^3
do ~ «4 " V

but
A, _ ^
a2 ?i'

A -A = di
a2
-«

4 «o '

but Ai > o-2 , V A
x
is the greatest of the four magnitudes,

.'. also A
x
— A3 > a2

— aiy

add ^43 + o4 to each of these equals,

.-. A
x + aA > «2 + ^4 3 «

" The whole of the process in the Fifth Book is purely logical, that is,

the whole of the results are virtually contained in the definitions, in the

manner and sense in which metaphysicians (certain of them) imagine all

the results of mathematics to be contained in their definitions and hypo-
theses. No assumption is made to determine the truth of any conse-

quence of this definition, which takes for granted more about number or

magnitude than is necessary to understand the definition itself. The
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latter being once understood, its results are deduced by inspection—of

itself only, without the necessity of looking at any thing else. Hence,
a great distinction between the fifth and the preceding books presents
itself. The first four are a series of propositions, resting on different fun-
damental assumptions ; that is, about different kinds of magnitudes.
The fifth is a definition and its developement ; and if the analogy by which
names have been given in the preceding Books had been attended to, the
propositions of that Book would have been called corollaries of the defini-

tion."— Connexion ofNumber and Magnitude, byProfessor De Morgan, p.56.

The Fifth Book of the Elements as a portion of Euclid's System of

Geometry ought to be retained, as the doctrine contains some of the most
important characteristics of an effective instrument of intellectual Educa-
tion. This opinion is favoured by Dr. Barrow in the following expressive

terms : " There is nothing in the whole body of the Elements of a more
subtile invention, nothing more solidly established, or more accurately

handled than the doctrine of proportionals."

QUESTIONS ON BOOK V.

1. Explain and exemplify the meaning of the terms, multiple, sub-

multiple, equimultiple.

2. What operations in Geometry and Arithmetic are analogous ?

3. "What are the different meanings of the term measure in Geometry ?

When are Geometrical magnitudes said to have a common measure?

4. When are magnitudes said to have, and not to have, a ratio to one
another? What restriction does this impose upon the magnitudes in

regard to their species ?

o. When are magnitudes said to be commensurable or incommensur-
able to each other ? Do the definitions and theorems of Book v, include

incommensurable quantities ?

6. What is meant by the term geometrical ratio ? How is it represented ?

7. Why does Euclid give no independent definition of ratio ?

8. What sort of quantities are excluded from Euclid's idea of ratio,

and how does his idea of ratio differ from the Algebraic definition ?

9. How is a ratio represented Algebraically? Is there any distinction

between the terms, a ratio of equality, and equality of ratio?
10. In what manner are ratios, in Geometry, distinguished from each

other as equal, greater, or less than one another? What objection is

there to the use of an independent definition (properly so called) of ratio

in a system of Geometry ?

11. Point out the distinction between the geometrical and algebraical

methods of treating the subject of proportion.

12. What is the geometrical definition of proportion ? AVhence arises

the necessity of such a definition as this ?

1 3. Shew the necessity of the qualification " any whatever" in Euclid's
definition of proportion.

14. Must magnitudes that are proportional be all of the same kind ?

15. To what objection has Euc. v. def. 5, been considered liable ?

16. Point out the connexion between the more obvious definition of

proportion and that given by Euclid, and illustrate clearly the nature of

the advantage obtained by which he was induced to adopt it.

17. Why may not Euclid's definition of proportion be superseded in
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a system of Geometry by the following: "Four quantities are propor-
tionals, when the first is the same multiple of the second, or the same
part of it, that the third is of the fourth ?"

18. Point out the defect of the following definition: "Four magni-
tudes are proportional when equimultiples may be taken of the first and
the third, and also of the second and fourth, such that the multiples of

the first and second are equal, and also those of the third and fourth."

19. Apply Euclid's definition ofproportion, to shew that iffour quan-
tities be proportional, and if the first and the third be divided into the

same arbitrary number ofequal parts, then the second and fourth will either

be equimultiples of those parts, or will lie between the same two suc-

cessive multiples of them.
20. The Geometrical definition of proportion is a consequence of the

Algebraical definition ; and conversely.

21. What Geometrical test has Euclid given to ascertain that four

quantities are not proportionals ? "What is the Algebraical test ?

22. Shew in the manner of Euclid, that the ratio of 15 to 17 is greater

than that of 11 to 13.

23. How far may the fifth definition of the fifth Book be regarded as

an axiom ? Is it convertible ?

24. Def. 9, Book v. " Proportion consists of three terms at least."

How is this to be understood ?

25. Define duplicate ratio. How does it appear from Euclid that the

duplicate ratio of two magnitudes is the same as that of their squares ?

26. When is a ratio compounded of any number of ratios ? What is

the ratio which is compounded of the ratios of 2 to 5, 3 to 4, and 5 to 6 ?

27. By what process is a ratio found equal to the composition of two
or more given ratios? Give an example, where straight lines are the

magnitudes which express the given ratios.

28. What limitation is there to the alternation of a Geometrical pro-

portion ?

29. Explain the construction and sense of the phrases, ex cequali,

and ex (equali in proportione perturbata, used in proportions.

30. Exemplify the meaning of the word homologous as it is used in

the Fifth Book of the Elements.
31. Why, in Euclid v. 11, is it necessary to prove that ratios which

are the same with the same ratio, are the same with one another ?

32. Apply the Geometrical criterion to ascertain, whether the four

lines of 3, 5, 6, 10 units are proportionals.

33. Prove by taking equimultiples according to Euclid's definition,

that the magnitudes 4, 5, 7, 9, are not proportionals.

34. Give the Algebraical proofs ofProps. 17 and 18, ofthe Fifth Book.

35. What is necessary to constitute an exact definition? In the de-

monstration of Euc. v. 18, is it legitimate to assume the converse of the

tilth definition of that Book? Does a mathematical definition admit of

proof on the principles of the science to which it relates ?

36. Explain why the properties proved in Book v, by means of straight

lines, are true of any concrete magnitudes.

37. Enunciate Euc. v. 8, and illustrate it by numerical examples.

38. Prove Algebraically Euc. v. 25.

39. Shew that when four magnitudes are proportionals, they cannot,

when equally increased or equally diminished by any other magnitude,

continue to be proportionals.

40. What grounds are there for the opinion that Euclid intended to

exclude the idea of numerical measures of ratios in his Fifth Book.

41. What is the object of the Fifth Book of Euclid's Elements r



BOOK VI.

DEFINITIONS.

I.

Similar rectilineal figures are those which have their several

angles equal, each to each, and the sides about the equal angles pro-

portionals.

II.

" Reciprocal figures, viz. triangles and parallelograms, are such as

have their sides about two of their angles proportionals in such a

manner, that a side of the first figure is to a side of the other, as the
remaining side of the other is to the remaining side of the first."

III.

A straight line is said to be cut in extreme and mean ratio, when
the whole is to the greater segment, as the greater segment is to the

less.

IV.

The altitude of any figure is the straight line drawn from its vertex

perpendicular to the base.

PROPOSITION I. THEOREM.

Triangles and parallelograms of the same altitude are one to the other as
their bases.

Let the triangles ABC, A CD, and the parallelograms EC, CF,
have the same altitude,

viz. the perpendicular drawn from the point A to BD or BD pro-
duced.

As the base .EC is to the base CD, so shall the triangle ABC he to
the triangle A CD,

and the parallelogram EC to the parallelogram CF,
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HGB C D

Produce BD both ways to the points H, L,

and take any number of straight lines BG, GH, each equal to the

base BC\ (I. 3.)

and DK, KL, any number of them, each equal to the base CD
;

and join AG, AH. AK, AL.
Then, because CB. BG, GH, are all equal,

the triangles AHG, AGB, ABC, are all equal : (I. 38.)

therefore, whatever multiple the base HC is of the base BC,
the same multiple is the triangle AHC of the triangle ABC:

for the same reason whatever multiple the base LC is of the base CD,
the same multiple is the triangle ALC of the triangle ADC:

and if the base HC be equal to the base CL,
the triangle AHC is also equal to the triangle ALC: (I. 38.)

and if the base HCbe greater than the base CL,
likewise the triangle AHC is greater than the triangle ALC;

and if less, less

;

therefore since there are four magnitudes,
viz. the two bases BC, CD, and the two triangles ABC, ACD

;

and of the base BC, and the triangle ABC, the first and third, any
equimultiples whatever have been taken,

viz. the base HC and the triangle AHC;
and of the base CD and the triangle ACD, the second and fourth,

have been taken any equimultiples whatever,

viz. the base CL and the triangle ALC;
and since it has been shewn, that, if the base HC be greater than

the base CL,
the triangle AHC is greater than the triangle ALC;

and if equal, equal ; and if less, less
;

therefore, as the base BCis to the base CD, so is the triangle ABC
to the triangle A CD. (v. def. 5.)

And because the parallelogram CD is double of the triangle ABC.
(I. 41.)

and the parallelogram CF double of the triangle A CD,
and that magnitudes have the same ratio which their equimultiples

have; (v. lo.)

as the triangle ABC is to the triangle A CD, so is the parallelogram

EC to the parallelogram CF;
and because it has been shewn, that, as the base BCis to the base

CD, so is the triangle ABC to the triangle ACD

;

and as the triangle ABC is to the triangle ACD, so is the paralle-

logram EC to the parallelogram CF;
therefore, as the base BC is to the base CD, so is the parallelogram

EC to the parallelogram CF. (v. 11.)

Wherefore, triangles, &c. Q.E.D.
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Cor. From this it is plain, that triangles and parallelograms that

have equal altitudes, are to one another as their bases.

Let the figures be placed so as to have their bases in the same
straight line ; and having drawn perpendiculars from the vertices of

the triangles to the bases, the straight line which joins the vertices is

parallel to that in which their bases are, (I. 33.) because the perpen-
diculars are both equal and parallel to one another, (i. 28.) Then, if

the same construction be made as in the proposition, the demonstration
will be the same.

PROPOSITION II. THEOREM.
If a straight line be drawn parallel to one of the sides of a triangle,

it shall cut the other sides, or these produced, proportionally : and conversely,

if the sides, or the sides produced, be cut proportionally, the straight line

whichjoins the points of section shall be parallel to the remaining side of the
triangle.

Let DE be drawn parallel to BC, one ofthe sides ofthe triangle ABC.
Then BD shall be to DA, as CE to EA.

m m
Join BE, CD.

Then the triangle BDE is equal to the triangle CDE, (I. 37.)

because they are on the same base DE, and between the same
parallels DE, BC;

but ADE is another triangle
;

and equal magnitudes have the same ratio to the same magnitude

;

(v. 7.)

therefore, as the triangle BDE is to the triangle ADE, so is the

triangle CDE to the triangle ADE:
but as the triangle BDE'to the triangle ADE, so is BD to DA, (VT. 1.)

because, having the same altitude, viz. the perpendicular drawn
from the point E to AB, they are to one another as their bases

;

and for the same reason, as the triangle CDE to the triangle ADE,
so is CE to EA :

therefore, as BD to DA, so is CE to EA. (v. 11.)

Next, let the sides AB.AC of the triangle ABC, or these sides

produced, be cut proportionally in the points D, E, that is, so that
BD may be to DA as CE to EA, and join DE.

Then DE shall be parallel to BC.
The same construction being made,

because as BD to DA, so is CE to EA
;

and asBD to DA, so is the triangleBDE to the triangle ADE; (VI. I.)

and as CE to EA, so is the triangle CDE to the triangle ADE;
therefore the triangle BDE is to the triangle ADE, as the triangle
CDE to the triangle ADE; (v. 11.)
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that is, the triangles BDE, CDE have the same ratio to the trianele
ADE: 5

therefore the triangle BDE is equal to the triangle CLE: (v. 9.)
and they are on the same base DE:

but equal triangles on the same base and on the same side of it, are
between the same parallels

;
(i. 39.)

therefore BE is parallel to BC.
Wherefore, if a straight line, &c. Q. E. D.

PROPOSITION III THEOREM.

If the angle of a triangle be divided into two equal angles, by a straight
line which also cuts the base ; the segments of the base shall have the same
ratio which the other sides of the triangle have to one another . and con-
versely, if the segments of the base have the same ratio which the other sides
of the triangle have to one another ; the straight line drawnfrom the vertex to
the point of section, divides the vertical angle into two equal angles.

Let ABC he a triangle, and let the angle BA Cbe divided into two
equal angles by the straight line AD.

Then BD shall be to DC, as BA to AC.

Through the point Cdraw CE parallel to DA, (i. 31.)

and let BA produced meet CE in E.
Because the straight line A C meets the parallels AD, EC,

the angle A CE is equal to the alternate angle CAD : (i. 29.)

but CAD, by the hypothesis, is equal to the angle BAD

;

wherefore BAD is equal to the angle A CE. (ax. 1.)

Again, because the straight line BAE meets the parallels AD, EC,
the outward angle BAD is equal to the inward and opposite angle

AEC: (I. 29.)

but the angle A CE has been proved equal to the angle BAD
;

therefore also A CE is equal to the angle AEC, (ax. 1.)

and consequently, the side AE is equal to the side AC-. (l. 6.)

and because AD is drawn parallel to EC, one of the sides of the tri-

iBCE,
therefore BD is to DC, as BA to AE: (yi. 2.)

but AE is equal to AC;
therefore, as BD to DC, so is BA to AC. (v. 7.)

Next, let BD be to DC, as BA to A C, and join AD.
Then the angle BA C shall be divided into two equal angles by the

straight line AD.
The same construction being made ;

because, as BD to DC, so is BA to AC;
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and as BD to DC, so is BA to AE, because AD is parallel to EC;
(VI. 2.)

therefore BA is to A C, as BA to AE: (v. 11.)

consequently AC is equal to AE, (v. 9.)

and therefore the angle AEC is equal to the angle A CE : (i. 5.)

but the angle AEC is equal to the outward and opposite angle BAD;
and the angle ACE is equal to the alternate angle CAD : (I. 29.)

wherefore also the angle BAD is equal to the angle CAD
;
(ax. 1.)

that is, the angle BAC is cut into two equal angles by the straight

line slD.
Therefore, if the angle, &c. q.e.d.

PROPOSITION A. THEOREM.
7/ the outicard angle of a triangle made by producing one of its sides,

be divided into two equal angles, by a straight line, which also cuts the base

produced ; the segments beticeen the dividing line and the extremities of the

base, have the same ratio which the other sides of the triangle have to one

another : and conversely , if the segments of the base produced have the same
tatio which the other sides of the triangle have ; the straight line drawn from
the vertex to the point of section divides the outv:ard angle of the triangle

into two equal angles.

Let ABC be a triangle, and let one of its sides BA be produced to E;
and let the outward angle CAE be divided into two equal angles by

the straight line AD which meets the base produced in D.
Then BD shall be to DC, as BA to AC.

Through C draw CF parallel to AD: (l. 31.)

and because the straight line A C meets the parallels AD, FC,
the angle ACF is equal to the alternate angle CAD: (I. 29.)

but CAD is equal to the angle DAE; (hyp.)

therefore also DAE is equal to the angle ACF. (ax. 1.)

Again, because the straight line FAE meets the parallels AD, FC,
the outward angle DAE is equal to the inward and opposite angle

CFA : (I. 29.)

but the angle ACF has been proved equal to the angle DAE;
therefore also the angle ACF is equal to the angle CFA

;
(ax. 1.)

and consequently the side AF is equal to the side AC: (i. 6.)

and because AD is parallel to FC, a side of the triangle BCF,
therefore BD is to DC, as BA to AF: (vi. 2.)

but AF is equal to AC;
therefore, as BD is to DC, so is BA to A C. (v. 7.)

Next, let BD be to DC, as BA to AC, and join AD.
The angle CAD, shall be equal to the angle DAE.

The same construction being made,
because BD is to DC, as BA to AC;
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and that BD is also to DC, as BA to AF; (vi. 2.)

therefore BA is to AC, as iL4 to ^4jP: (v. 11.)

wherefore -4Cis equal to AF, (v. 9.)

and the angle AFC equal to the angle A CF: (i. 5.)

but the angle AFC is equal to the outward angle FAD, (T. 29.)
and the angle A CF to the alternate angle CAD

;

therefore also FAD is equal to the angle CAD. (ax. 1.)

"Wherefore, if the outward, &c. q.e.d.

PROPOSITION IV. THEOREM.

The sides about the equal angles of equiangular triangles are proportionals

;

and those which are opposite to the equal angles are homologous sides
f
that is,

are the antecedents or consequents of the ratios.

Let ABC, DCF he equiangular triangles, having the angle ABC
equal to the angle DCF, and the angle ACB to the angle DEC-, and
consequently the angle BA C equal to the angle CDF. (i. 32.)

The sides about the equal angles of the triangles ABC, DCF shall

be proportionals

;

and those shall be the homologous sides which are opposite to the

equal angles.

Let the triangle DCF be placed, so that its side CF may be con-

tiguous to BC, and in the same straight line with it. (i. 22.)

Then, because the angle BCA is equal to the angle CFD, (hyp.)

add to each the angle ABC;
therefore the two angles ABC, BCA are equal to the two angles

ABC, CFD: (ax. 2.)

but the angles ABC, BCA are together less than two right angles
;

(I. 17.)

therefore the angles AB C, CFD are also less than two right angles

:

wherefore BA, ED if produced will meet: (I. ax. 12.)

let them be produced and meet in the point F:
then because the angle ABC is equal to the angle DCF, (hyp.)

BF is parallel to CD
;
(1.28.)

and because the angle A CB is equal to the angle DEC,
AC is parallel to FF: (I. 28.)

therefore FA CD is a parallelogram
;

and consequently AF is equal to CD, and ^4Cto FD: (I. 34.)

and because A Cis parallel to FF, one ofthe sides of the triangle FBE
i

BA is to AF. as BC to CF : (vi. 2.)

but AF is equal to CD
;

therefore, as BA to CD, so is BC to CF: (v. 7.)

and alternately, as AB to BC, so is DCtc CF; (V. l&)



BOOK VI. PROP. IV, V. 265

again, because CD is parallel to BF,
as BC to CE, so is FD to DE: (vi. 2.)

but FD is equal to A C;
therefore, as BC to CE, so is ^4 C to ZLE; (v. 7.)

and alternately, as i?Cto CA, so CE to ^D : (v. 16.)

therefore, because it has been proved that AB is to BC, as DC io CE,
and as J5C to 04, so OJ? to ED,

ex aequali, 2?4 is to A C, as CD to Di?. (v. 22.)

Therefore the sides, &c. Q. e. d.

PROPOSITION V. THEOREM.

If the sides of two triangles, about each of their angles, be proportional?,

the triangles shall be equiangular ; and the equal angles shall be those which
are opposite to the homologous sides.

Let the triangles ABC, DEFh&xe their sides proportionals,

so that AB is to BC, as DE to EF;
and i?0 to CA, as EF to FD;

and consequently, ex aequali, BA to A C, as ED to DF.
Then the triangle ABC shall be equiangular to the triangle DEF,

and the angles which are opposite to the homologous sides shall be
equal, viz. the angle ABC equal to the angle DEF, and BCA to

EFD, and also BAC to EDF.
A D

B C G
At the points E, F, in the straight line EF, make the angle FEG

equal to the angle ABC, and the angle EFG equal to BCA: (I. 23.)

wherefore the remaining angle EGF, is equal to the remaining
angle BA C, (i. 32.)

and the triangle GEF is therefore equiangular to the triangle ABC:
consequently they have their sides opposite to the equal angles pro-

portional : (vi. 4.)

wherefore, as AB to BC, so is GE to EF;
but as AB to BC, so is DE to EF; (hyp.)

therefore as DE to EF, so GE to EF; (v. 11.)

that is, DE and GE have the same ratio to EF,
and consequently are equal, (v. 9.)

For the same reason, DF is equal to FG :

and because, in the triangles DEF, GEF, DE is equal to EG, and
EF is common,

the two sides DE, EF are equal to the two GE, EF, each to each ;

and the base DF is equal to the base GF;
therefore the angle DEF is equal to the angle GEF, (i. 8.)

and the other angles to the other angles which are subtended by the
equal sides

; (i. 4.)

therefore the angle DFE is equal to the angle GFE, and EDF, to

EGF,
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and because the angle DEF is equal to the angle GEF,
and GEF equal to the angle ABC; (constr.)

therefore the angle ABCis equal to the angle DEF: (ax. 1.)

for the same reason, the angle ACB is equal to the angle DFE,
and the angle at A equal to the angle at D

:

therefore the triangle ABC is equiangular to the triangle DEF.
Wherefore, if the sides, &c. Q. E. D.

PROPOSITION VI. THEOREM.
If two triangles have one angle of the one equal to one angle of the other,

and the sides about the equal angles proportionals, the triangles shall be

equiangular, and shall have those angles equal which are opposite to the

homologous sides.

Let the triangles ABC, DEFhecxe the angle BACm the one equal-

to the angle EDF in the other, and the sides about those angles pro-:

portionals

;

that is, BA to A C, as ED to DF.
Then the triangles ABC, DEF shall be equiangular, and shall have i

the angle ABC equal to the angle DEF, and ACB to DFE.
A D

£7
B C

At the points D, F, in the straight line DF, make the angle FDG
equal to either of the angles BA C, EDF; (i. 23.)

and the angle DFG equal to the angle ACB :

wherefore the remaining angle at B is equal to the remaining angle

at G : (I. 32.)

and consequently the triangleD GFis equiangular to the triangleAB C;

therefore as BA to AC, so is GD to DF: (vi. 4.)

but, by the hypothesis, as BA to AC, so is ED to DF;
therefore as ED to DF, so is GD to DF; (v. 11.)

wherefore ED is equal to DG; (v. 9.)

and Di^is common to the two triangles EDF, GDF:
therefore the two sides ED, DF are equal to the two sides GD, DF,

each to each
;

and the angle EDF is equal to the angle GDF; (constr.)

wherefore the base EF is equal to the base FG, (I. 4.)

and the triangle EDF to the triangle GDF,
and the remaining angles to the remaining angles, each to each,

which are subtended by the equal sides

:

therefore the angle DFG is equal to the angle DFE,
and the angle at G to the angle at E;

but the angle DFG is equal to the angle A CB ;
(constr.)

therefore the angle ACB is equal to the angle DFE; (ax. 1.)

unci the angle BACi* equal to the angle EDF: (hyp.)

iierefbre also the remaining angle at B is equal to the remaining

angle at E; (I. 32.)

therefore the triangle ABC is equiangular to the triangle DEF.
Wherefore, if two triangles, &c. Q.E.D.
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PROPOSITION VII. THEOREM.
If two triangles have one angle of the one equal to one angle of the other,

and the sides about tico other angles proportionals ; then, if each of the

remaining angles be either less, or not less, than a right angle, or if one of
them be a right angle ; the triangles shall be equiangular, and shall have those

angles equal about which the sides are proportionals.

Let the two triangles ABC, DEF have one angle in the one equal

to one angle in the other,

viz. the angle BA C to the angle EDF, and the sides about two other
angles AB C, DEF proportionals,

so that AB is to BC, as BE to EF;
and in the first case, let each of the remaining angles at C, F be less

than a right angle.

The triangle ABC shall be equiangular to the triangle DEF,
viz. the angle ABC shall be equal to the angle DEF,

and the remaining angle at C equal to the remaining angle at F,

^ D

E F

For if the angles ABC, DEF he not equal,

one of them must be greater than the other

:

let ABC he the greater,

and at the point B, in the straight line AB,
make the angle ABG equal to the angle DEF; (i. 23.)

and because the angle at A is equal to the angle at D, (hyp.)

and the angle ABG to the angle DEF;
the remaining angle AGB is equal to the remaining angle DFE:

(I. 32.)

therefore the triangle ABG is equiangular to the triangle DEF:
wherefore as AB is to BG, so is DE to EF: (vi. 4.)

but as DE to EF, so, by hypothesis, is AB to BC;
therefore as AB to BC, so is AB to BG: (v. 11.)

and because AB has the same ratio to each of the lines BC, BG,
BCis equal to BG; (v. 9.)

and therefore the angle BGCis equal to the angle BCG : (I. 5.)

but the angle BCG is, by hypothesis, less than a right angle

;

therefore also the angle BGC is less than a right angle
;

and therefore the adjacent angle A GB must be greater than a right

angle; (I. 13.)

but it was proved that the angle AGB is equal to the angle at F;
therefore the angle at F is greater than a right angle

;

but, by the hypothesis, it is less than a right angle ; which is absurd.

Therefore the angles ABC, DEF oxe not unequal,

that is, they are equal

:

and the angle at A is equal to the angle at D : (hyp.)

wherefore the remaining angle at C is equal to the remaining angle a
F: (I. 32.)

therefore the triangle ABC'm equiangular to the triangle DEF,
I*
T 3
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Next, let each of the angles at C, F be not less than a right angle.
Then the triangle ABC shall also in this case be equiangular to the

triangle DBF.

/!..

A

^3
B C E F

The same construction being made,
it may be proved in like manner that BC is equal to BG,
and therefore the angle at C equal to the angle BGC:
but the angle at Ois not less than a right angle

;
(hyp.)

therefore the angle BGC is not less than a right angle

:

wherefore two angles of the triangle BGC axe together not less than

two right angles

:

which is impossible; (I. 17.)

and therefore the triangle ABC may be proved to be equiangular to

the triangle DBF, as in the first case.

Lastly, let one of the angles at C, F, viz. the angle at C, be a right

angle : in this case likewise the triangle ^i?Cshall be equiangular

to the triangle DBF.

A
A

B
A

C E F

For, if they be not equiangular,

at the point B in the straight line AB make the angle ABG equal

to the angle DBF;
then it may be proved, as in the first case, that BG is equal to BC:
and therefore the angle BCG equal to the angle BGC: (I. 5.)

but the angle BCG is a right angle, (hyp.)

therefore the angle BGC is also a right angle
;

(ax. 1.)

whence two of the angles of the triangle BGC sue together not less

than two right angles

;

which is impossible : (I. 17.)

therefore the triangle ABC is equiangular to the triangle DBF.
Wherefore, if two triangles, &c. Q.E.D.

PROPOSITION VIII. THEOREM.

In a right-angled triangle, if a perpendicular be draion from the right

angle to the base ; the triangles on each side of it are similar to the whole

triangle, and to one another.

luetABChe a right angled-triangle, having the right angle BAC;
and from the point A let AD be drawn perpendicular to the base BC.

Then the triangles ABD, ABC shall be similar to the whole tri-

angle ABC, and to one another.
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A

B DC
Because the angle BACh equal to the angle ADB, each of them

being a right angle, (ax. 11.)

and that the angle at B is common to the two triangles ABC. AB1)

:

the remaining angle ACB is equal to the remaining angle BAD;
(I. 32.)

therefore the triangle ABC is equiangular to the triangle ABB,
and the sides about their equal angles are proportionals

;
(VI. 4.)

•wherefore the triangles are similar : (vi. def. 1.)

in the like manner it may be demonstrated, that the triangle ADC
is equiangular and similar to the triangle ABC.

And the triangles ABD, ACD, being both equiangular and similar

to ABC, are equiangular and similar to each other.

Therefore, in a right-angled, &c. Q.E.D.

Cor. From this it is manifest, that the perpendicular drawn from
the right angle of a right-angled triangle to the base, is a mean propor-

tional between the segments of the base ; and also that each of the

sides is a mean proportional between the base, and the segment of it

adjacent to that side : because in the triangles BDA, ADC; BD is to

DA, as DA to DC; (VI. 4.)

and in the triangles ABC, DBA ; BCk to BA, as BA to BD : (VI. 4.)

*nd in the triangles ABC, ACD; BC is to CA, as CA to CD. (vi.4.)

PROPOSITION IX. PROBLEM.

From a given straight line to cut off any part required.

Let AB be the given straight line.

It is required to cut off any part from it.

A

From the point A draw a straight line A C, making any angle with AB;
and in A C take any point D,

and take ^4Cthe same multiple of AD, that AB is of the part

which is to be cut off from it

;

join BC, and draw DE parallel to CB.
Then AE shall be the part required to be cut off.

Because ED is parallel to BC, one of the sides of the triangle ABC,
as CD is to DA, so is BE to EA ;

(vi. 2.)

and by composition, CA is to AD, as BA to AE: (v. 18.)
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but CA is a multiple of AB
;

(constr.)

therefore BA is the same multiple ofAE : (v. D.)

whatever part therefore AD is of AC, AE is the same part of AB \

wherefore, from the straight line AB the part required is cut off.

Q.E.F.

PROPOSITION X. PROBLEM.
To divide a given straight line similarly to a given divided straight line,

that is, into parts that shall have the same ratios to one another which the

parts of the divided given straight line have.

Let AB be the straight line given to be divided, and A C the divided

line.

It is required to divide AB similarly to AC.

Let A Che divided in the points B, E;
and let AB, .4(7 be placed so as to contain any angle, and join BC,
and through the points B, E draw BF, EG parallels to BC. (i. 31.)

Then AB shall be divided in the points F, G, similarly to AC.
Through B draw BRK parallel to AB :

therefore each of the figures, FH, IIB is a parallelogram

;

wherefore BR is equal to FG, and HK to GB : (i. 34.)

and because HE is parallel to KC, one of the sides of the triangle

BKC,
as CE to EB, so is KH to HB : (VI. 2.)

but KH is equal to BG, and HB to GF;
therefore, as CE is to EB, so is BG to GF: (V. 7.)

again, because FB is parallel to GE, one of the sides of the triangle

AGE,
as EB is to BA, so is GFto FA : (TL 2.)

therefore, as has been proved, as CE is to EB, so is BG to GF,
and as EB is to BA, so is GFto FA :

therefore the given straight line AB is divided similarly to A C. Q.E.F,

PROPOSITION XL PROBLEM.
Tofind a third proportional to two given straight lines.

Let AB, AC be the two given straight lines.

It is required to find a third proportional to AB, A C.

A

b/Ac

LA
D E

Let AB, AC be placed so as to contain any ang>:
produce AB. AC to the points B, E\
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1

and make BB equal to A C\

join BC, and through D, draw BE parallel to BC. (I. 31.)

Then CE shall be a third proportional to AB and ^4 C.

Because B C is parallel to BE, a side of the triangle ABE,
AB is to BB, as AC to CE: (VI. 2.)

but J5D is equal to AC;
therefore as AB is to A C, so is A C to C£. (v. 7.)

Wherefore, to the two given straight lines AB, A C, a third pro-

portional CE is found. Q.E.F.

PROPOSITION XII. PROBLEM.
To find a fourth proportional to three given straight lines.

Let A, B, Che the three given straight lines.

It is required to find a fourth proportional to A, B, C.

Take two straight lines BE, BF, containing any angle EBF-
and upon these make BG equal to A, GE equal to B, and BH equal

to C; (I. 3.)

D a

join GH, and through E draw EF parallel to it. (I. 31.)

Then HF shall be the fourth proportional to A, B, C.

Because GH is parallel to EF, one of the sides of the triangle BEF,
BG is to GE, as BH'to HF\ (vi. 2.)

but Z>£ is equal to A, GE to B, and DJTto (7;

therefore, as A is to B, so is Cto iZlF. (v. 7.)

Wherefore to the three given straight lines A, B, C, a fourth

proportional HF is found. Q. E. F.

PROPOSITION XIII. PROBLEM.
Tofind a mean proportional between two given straight lines,

Let AB, BChe the two given straight lines.

It is required to find a mean proportional between them.

_D

B C

Place AB, BC in a straight line, and upon AC describe the semi-
circle ABC,

and from the point B draw BB at right angles to A C. (i. 11.)
Then BB shall be a mean proportional between AB and BC.

Join AB, BC.
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And because the angle ADCm a semicircle is a right angle, (ill. 31.)
and because in the right-angled triangle ADC, BD is drawn from

the right angle perpendicular to the base,

DB is a mean proportional between AB, BC the segments of the
base : (vi. 8. Cor.)

therefore between the two given straight lines AB, BC, & mean
proportional DB is found, q.e.f.

PROPOSITION XIV. THEOREM.

Equal parallelograms, which have one angle of the one equal to one
angle of the other, have their sides about the equal angles reciprocally pro-
portional: and conversely, parallelograms that have one angle of the one
equal to one angle of the other, and their sides about the equal angles reci-

procally proportional, are equal to one another.

Let AB, BCbe equal parallelograms, which have the angles at B
equal.

The sides of the parallelograms AB, BC about the equal angles,

shall be reciprocally proportional
;

that is, DB shall be to BE, as GB to BF.

J,-\E

\__
G C

Let the sides DB, BE be placed in the same straight line

;

wherefore also FB, BG are in one straight line : (i. 14.)

complete the parallelogram FE.
And because the parallelogram AB is equal to BC, and that FE

is another parallelogram,

AB is to FE, as BC to FE: (v. 7.)

but as AB to FE so is the base DB to BE, (vi. 1.)

and as BC to FE, so is the base GB to BF:
therefore, as DB to BE, so is GB to BF. (v. 11.)

Wherefore, the sides of the parallelograms AB, BC about their

equal angles are reciprocally proportional.

Next, let the sides about the equal angles be reciprocally proportional,

viz. as DB to BE, so GB to BF:
the parallelogram AB shall be equal to the parallelogram BC.

Because, as DB to BE, so is GB to BF;
and as DB to BE, so is the parallelogram AB to the parallelogram

FE; (VI. 1.)

and as GB to BF, so is the parallelogram BC to the parallelogram FE;
therefore as AB to FE, so BC to FE: (v. 11.)

therefore the parallelogram AB is equal to the parallelogram BC.
(v. 9.)

Therefore equal parallelograms, &c. Q.E.D.
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PROPOSITION XV. THEOREM.

Equal triangles which have one angle of the one equal to one angle of

the other, have their sides about the equal angles reciprocally proportional

:

and conversely, triangles which have one angle in the one equal to one angle

in the other, and their sides about the equal angles reciprocally proportional,

are equal to one another.

Let AB C, ADE be equal triangles, which have the angle BAC
equal to the angle DAE.

Then the sides about the equal angles of the triangles shall be re-

ciprocally proportional

;

that is, CA shall be to AD, as EA to AB.

Let the triangles be placed so that their sides CA, AD be in one

straight line

;

wherefore also EA and AB are in one straight line
;

(i. 14.)

and join BD.
Because the triangle ABC is equal to the triangle ADE,

and that ABD is another triangle
;

therefore as the triangle CAB, is to the triangle BAD, so is the

triangle AED to the triangle DAB; (v. 7.)

but as the triangle CAB to the triangle BAD, so is the base CA
to the base AD, (vi. 1.)

and as the triangle EAD to the triangle DAB, so is the base EA
to the base AB\ (vi. 1.)

therefore as CA to AD, so is EA to AB: (v. 11.)

wherefore the sides of the triangles ABC, ADE, about the equal

angles are reciprocally proportional.

Next, let the sides of the triangles ABC, ADE about the equal
angles be reciprocally proportional,

viz. CA to AD as EA to AB.
Then the triangle ABC sh&\\ be equal to the triangle ADE.

Join BD as before.

Then because, as CA to AD, so is EA to AB
;
(hyp.)

and as CA to AD, so is the triangle ABC to the triangle BAD:
(vi. L)

and as EA to AB, so is the triangle EAD to the triangle BAD
;

(vi. 1.)

therefore as the triangle BA C to the triangle BAD, so is the tri-

angle EAD to the triangle BAD; (V. 11.)

that is, the triangles BA C, EAD have the same ratio to the tri-

angle BAD:
wherefore the triangle ABCh equal to the triangle ADE. (v. 9.)

Therefore, equal triangles, &c. q.e.d.

N5
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PROPOSITION XVI. THEOREM.
If four straight lines be proportionals, the rectangle contained by tJie

extremes is equal to the recto.ngle contained by the means : and conversely,

if the rectangle contained by the extremes be equal to the rectangle con-

tained by the means, the four straight lines are proportionals.

Let the four straight lines AB, CD, E, Fbe proportionals,

viz. as AB to CD, so E to F.
The rectangle contained by AB, F, shall be equal to the rectangle

contained by CD, E.

H

E- :

F
1 B

From the points A, C draw AG, CH at right angles to AB, CD :

(I. 11.)

and make AG equal to F, and CH equal to F; (i. 3.)

and complete the parallelograms BG, DH. (I. 31.)

Because, as AB to CD, so is E to F;
and that F is equal to CH, and F to AG;
AB is to CD as CH to AG: (v. 7.)

therefore the sides of the parallelograms BG, DH about the equal

angles are reciprocally proportional

;

but parallelograms which have their sides about equal angles reci-

procally proportional, are equal to one another
;

(vi. 14.)

therefore the parallelogram BG is equal to the parallelogram DH:
but the parallelogram BG is contained by the straight lines AB, F;

because AG is equal to F;
and the parallelogram DH is contained by CD and F

;

because CHis equal to E;
therefore the rectangle contained by the straight lines AB, F, is

equal to that which is contained by CD and E.
And if the rectangle contained by the straight lines AB, F, be

equal to that which is contained by CD, E;
these four lines shall be proportional,

viz. AB shall be to CD, as E to F.
The same construction being made,

because the rectangle contained by the straight lines AB, F, is

equal to that which is contained by CD, E,
and that the rectangle BGis contained by AB, F;

because A G is equal to F;
and the rectangle DH by CD, E; because CH is equal to E\
therefore the parallelogram BG\% equal to the parallelogram DH;

(ax. 1.)

and they are equiangular

:

"but the sides about the equal angles of equal parallelograms are

reciprocally proportional : (VI. 14.)

wherefore", as AB to CD, so is CH to AG.
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But OS" is equal to E, and AG to F;
therefore as AB is to CD, so is j£ to F. (v. 7.)

"Wherefore, if four, &c. Q.E.D.

PROPOSITION XVII. THEOREM.

If three straight lines be proportionals, the rectangle contained by the

$xtremes is equal to the square on the mean ; and conversely, if the rectangle

contained by the extremes be equal to the square on the mean, the three

straight lines are proportionals

.

Let the three straight lines A, B, Cbe proportionals,

viz. as A to B, so B to C.

The rectangle contained by A, C shall be equal to the square on B.

A .-
B , _* J

a I « U
C A

Take D equal to B.
And because as A to B, so B to C, and that B is equal to D;

A is to J?, as DtoC: (v. 7.)

but if four straight lines be proportionals, the rectangle contained

by the extremes is equal to that which is contained by the means

;

(vi. 16.)

therefore the rectangle contained by A, C is equal to that con-

tained by B, D :

but the rectangle contained by B, D, is the square on B,
because B is equal to D :

therefore the rectangle contained by A, C, is equal to the square on B.
And if the rectangle contained by A, C, be equal to the square on B,

then A shall be to B, as B to C.

The same construction being made,
because the rectangle contained by A, Cis equal to the square on B,
and the square on B is equal to the rectangle contained by B, D,

because B is equal to D;
therefore the rectangle contained by A, C, is equal to that contained

b^ B, D:
but if the rectangle contained by the extremes be equal to that con-

tained by the means, the four straight lines are proportionals : (VI. 16.)

therefore A is to 5, as D to C

:

but B is equal to D
;

wherefore, as A to B, so B to C.

Therefore, if three straight lines, &c. Q.E.D.

PROPOSITION XVIII. PROBLEM.
Upon a given straight line to describe a rectilineal figure similar, and

similarly situated, to a given rectilineal figure.

Let AB be the given straight line, and CD.EF the given rectilineal

figure of four sides.
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It is required upon the given straight line AB to describe a rectili-

neal figure similar, and similarly situated, to CDEF.
H

B>
E

C

Join DF, and at the points A, B in the straight line AB, make the

angle BAG equal to the angle at C, (i. 23.)

and the angle ABG equal to the angle CDF;
therefore the remaining angle A GB is equal to the remaining angle

CFD : (i. 32 and ax. 3.)

therefore the triangle FCD is equiangular to the triangle GAB.
Again, at the points G, B, in the straight line GB, make the angle

BGH equal to the angle DFE, (i. 23.)

and the angle GBR equal to FDE;
therefore the remaining angle GHB is equal to the remaining angle

FED,
and the triangle FDE equiangular to the triangle GBH:

then, because the angle AGB is equal to the angle CFD, and BGH
to DFE,

the whole angle AGH is equal to the whole angle CFE; (ax. 2.)

for the same reason, the angle ABU is equal to the angle CDE:
also the angle at A is equal to the angle at C, (constr.)

and the angle GHB to FED

:

therefore the rectilineal figure ABUG is equiangular to CDEF:
likewise these figures have their sides about the equal angles pro-

portionals
;

because the triangles GAB, FCD being equiangular,

BA is to AG, as CD to CF; (vi. 4.)

and because A G is to GB, as CF to FD
;

and as GB is to GH, so is FD to FE,
by reason of the equiangular triangles BGH, DFE,

therefore, ex sequali, AG is to GH, as CF to FE. (v. 22.)

In the same manner it may be proved that AB is to BH, as CD
to DE:

and GH is to HB, as FE to ED. (vi. 4.)

Wherefore, because the rectilineal figures ABHG, CDEF are

equiangular,

and have their sides about the equal angles proportionals,

they are similar to one another, (vi. def. 1.)

Next, let it be required to describe upon a given straight line AB,
a rectilineal figure similar, and similarly situated, to the rectilineal

figure CDKEF of five sides.

Join DE, and upon the given straight line AB describe the rectili-

neal figure ABHG similar, and similarly situated, to the quadrilateral

figure CDEF, by the former case

:

and at the points B, H, in the straight line BH, make the angle
HBL equal to the angle EDK,

and the angle BHL equal to the angle DEK\
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therefore the remaining angle at L is equal to the remaining angle

at K. (I. 32, and ax. 3.)

And because the figures ABIIG, CDEF are similar,

the angle GHB is equal to the angle FED: (vi. def. 1.)

and BHL is equal to DEK;
wherefore the whole angle GHL is equal to the whole angle FEK

:

for the same reason the angle ABL is equal to the angle CDK:
therefore the five-sided figures A GHLB, CFEKD are equiangular :

and because the figures A GHB, CFED are similar,

GHh to JIB, as FE to ED; (vi. def. 1.)

but as HB to HL, so is ED to EK; (vi. 4.)

therefore, ex sequali, GITis to HL, as FE to EK: (v. 22.)

for the same reason, AB is to BL, as CD to DK:
and ^Z is to LH, as Z>iT to X^, (YI. 4.)

because -the triangles BLH, DKE are equiangular

:

therefore because the five-sided figures A GHLB, CFEKD are equi-

angular,

and have their sides about the equal angles proportionals,

they are similar to one another.

In the same manner a rectilineal figure of six sides may be described

upon a given straight line similar to one given, and so on. Q. e. f.

PROPOSITION XIX. THEOREM.

Similar triangles are to one another in the duplicate ratio of their homo-
logous sides.

Let AB C, DEF be similar triangles, having the angle B equal to

the angle E,
and let AB be to BC, as DE to EF,

so that the side i?Cmay be homologous to EF. (v. def. 12.)

Then the triangle ABC shall have to the triangle DEF the dupli-

cate ratio of that which J?Chas to EF.
A D

B G C

Take BG a third proportional to BC, EF, (vi. 11.)

so that BCm&y be to EF, as EF to BG, and join GA.
Then, because as AB to BC, so DE to EF;

alternately, AB is to DE, as BC to EF: (v. 16.)

but as BC to EF, so is EF to BG
;
(constr.)

therefore, as AB to DE, so is EF to BG : (v. 11.)

therefore the sides of the triangles ABG, DEF, wrhich are about the
equal angles, are reciprocally proportional

:

but triangles, which have the sides about two equal angles recipro-

cally proportional, are equal to one another: (vi. 15.)

tnerefore the triangle ABG is equal to the triangle DEF:
and because as _Z?Cis to EF, so EF to BG\
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and that if three straight lines be proportionals, the first is said to

have to the third, the duplicate ratio of that which it has to the second

:

(v. def. 10.)

therefore .BChas to BG the duplicate ratio of that which-BChasto EF:
but as i?Cis toJBG, so is the triangleABCto the triangleABGr; (vi.l.)

therefore the triangle ABC has to the triangle ABG, the duplicate

ratio of that which _Z?Chas to EF:
but the triangle ABG is equal to the triangle DEF;

therefore also the triangle ABC has to the triangle DEF, the dupli-

cate ratio of that which I?Chas to EF.
Therefore similar triangles, &c. Q. E. D,

Cor. From this it is manifest, that if three straight lines be pro-

portionals, as the first is to the third, so is any triangie upon the first,

to a similar and similarly described triangle upon the second.

PROPOSITION XX. THEOREM.

Similar polygons may be divided into the same number of similar tri-

angles, having the same ratio to one another that the polygons have ; and the

polygons have to one another the duplicate ratio of that which their homo-

logous sides have.

Let ABODE, FGIIKL be similar polygons and let AB be the

side homologous to FG :

the polygons ABODE, FGIIKL may be divided into the same
number of similar triangles, whereof each shall have to each the same
ratio which the polygons have

;

and the polygon ABODE shall have to the polygon FGIIKL the

duplicate ratio of that which the side AB has to the side FG.

" 'O
K II

Join BE, EC, GL, LB..
And because the polygonABODE is similar to the polygon FGHKL,

the angle BAE is equal to the angle GFL, (vi. def. 1.)

and BA is to AE, as GF to FL : (VI. def. 1.)

therefore, because the triangles ABE, FGL have an angle in one,

equal to an angle in the other, and their sides about these equal angles

proportionals,

the triangle ABE is equiangular to the triangle FGL : (vi. 6.)

and therefore similar to it ;
(vi. 4.)

wherefore the angle ABE is equal to the angle FGL :

and, because the polygons are similar,

the whole angle ABO is equal to the whole angle FGH; (VI. def. 1.)

therefore the remaining angle EBCis equal to the remaining angle

LGH: (I. 32. and ax. 3.)

and because the triangles ABE, FGL are similar,

EB is to BA, as LG to GF; (vi. 4.)
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and also, because the polygons are similar,

AB is to BO, as FG to Gif; (vi. def. 1.)

therefore, ex aequali, EB is to BC, as LG to £iZ; (v. 22.)

that is, the sides about the equal angles EBC, LGHare proportionals
;

therefore, the triangle EBC is equiangular to the triangle LGH,
(vi. 6.) and similar to it

;
(vi. 4.)

for the same reason, the triangle ECD likewise is similar to the tri-

angle LHK

:

therefore the similar polygons ABODE, FGIIKL are divided into

the same number of similar triangles.

Also these triangles shall have, each to each, the same ratio which

the polygons have to one another,

the antecedents being ABE, EBC, EOT), and the consequents

FGL, LGH, LHK:
and the polygon ABODE shall have to the polygon FGIIKL the

duplicate ratio of that which the side AB has to the homologous
side FG. Because the triangle ABE is similar to the triangle FGL,
ABE has to FGL, the duplicate ratio of that which the side BE has

to the side GL : (vi. 19.)

for the same reason, the triangle BEC has to GLII the duplicate

ratio of that which BE has to GL :

therefore, as the triangle ABE is to the triangle FGL, so is the
triangle BEC to the triangle GLH. (v. 11.)

Again, because the triangle EBC is similar to the triangle LGH,
EBC has to LGH, the duplicate ratio of that which the side EC has

to the side LH:
for the same reason, the triangle ECD has to the triangle LUX, the

duplicate ratio of that which EC has to LII:
therefore, as the triangle EBC is to the triangle LGH, so is the tri-

angle ECD to the triangle LHK: (v. 11.)

but it has been proved,

that the triangle EBC is likewise to the triangle LGH, as the tri-

angle ABE to the triangle FGL :

therefore, as the triangle ABE to the triangle FGL, so is the triangle

EB Ctothe triangle LGH, and the triangle ECD to the triangle LHK:
and therefore, as one of the antecedents is to one of the consequents,

so are all the antecedents to all the consequents : (v. 12.)

that is, as the triangle ABE to the triangle FGL, so is the polygon
ABODE to the polygon FGHKL :

but the triangle ABE has to the triangle FGL, the duplicate ratio of

that which the side AB has to the homologous side FG; (vi. 19.)

therefore also the polygon ABODE has to the polygon FGHKL the

duplicate ratio of that which AB has to the homologous side FG.
Wherefore, similar polygons, &c. Q. E. D.

Cor. 1. In like manner it may be proved, that similar four-sided

figures, or of any number of sides, are one to another in the duplicate

ratio of their homologous sides : and it has already been proved in tri-

angles: (vi. 19.) therefore, universally, similar rectilineal figures are to

one another in the duplicate ratio of their homologous sides.

Cor. 2. And if to AB, FG, two of the homologous sides, a third

proportional M be taken, (vi. 11.)
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AB has to 31 the duplicate ratio of that which Alt has to FG i

(v. def. 10.)

but the four-sided figure or polygon upon AB, has to the four-

sided figure or polygon upon FG likewise the duplicate ratio of that

which AB has to FG : (VI. 20. Cor. 1.)

therefore, as AB is to M, so is the figure upon AB to the figure

upon FG: (v. 11.)

which was also proved in triangles : (VI. 19. Cor.)

therefore, universally, it is manifest, that if three straight lines be
proportionals, as the first is to the third, so is any rectilineal figure

upon the first, to a similar and similarly described rectilineal figure

upon the second.

PROPOSITION XXI. THEOREM.
Rectilineal figures which are similar to the same rectilineal figure, are

also similar to one another.

Let each of the rectilineal figures A, B be similar to the rectilineal

figure C.

The figure A shall be similar to the figure B.

Because A is similar to C,

they are equiangular, and also have their sides about the equal

angles proportional : (vi. def. 1.)

again, because B is similar to C,

they are equiangular, and have their sides about the equal angles

proportionals : (vi. def. 1.)

therefore the figures A, B are each of them equiangular to C, and
have the sides about the equal angles of each of them and of C pro-

portionals.

"Wherefore the rectilineal figures A and B are equiangular,

(i. ax. 1.) and have their sides about the equal angles pronortionals

:

(v. 11.)

therefore A is similar to B. (vi. def. 1.)

Therefore, rectilineal figures, &c. Q.E.D.

PROPOSITION XXII. THEOREM.

If four straight lines be proportionals, (he similar rectilineal figures

similarly described upon them shall also be proportionals : and conversely,

if the similar rectilineal figures similarly described upon four straight lines

be proportionals, those straight lines shall be proportionals.

Let the four straight lines AB, CD, EF, Gil be proportionals,

viz. AB to CD, as EF to GIf
;

and upon AB, CD let the similar rectilineal figures KAB, LCD be
similarly described

;

and upon EF, Gil the similar rectilineal figures 3IF, NH, in like

manner :

the rectilineal figure KAB shall be to LCD, as MF to NH.
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To AB, CD take a third proportional X; (VI. 11.)

and to FF, GH a third proportional O:
and because AB is to CD as FF to GH,

therefore CD is to X, as GH to O; (v. 11.)

wherefore, ex sequali, as AB to X, so FF to O: (v. 22.)

but as AB to X, so is the rectilineal figure KAB to the rectilineal

figure LCD,
and as i?F to O, so is the rectilineal figure 3IF to the rectilineal

figure NH: (VI, 20. Cor. 2.)

therefore, as iT^JB to LCD, so is J£Fto iVTJ. (v. 11.)

And if the rectilineal figure KAB be to LCD, as JfJPto iTO;
the straight line AB shall be to CD, as .fclF'to <2if.

Make as AB to CD, so EF to PR, (vi. 12.)

and upon PR describe the rectilineal figure SB similar and simi-

larly situated to either of the figures MF, NH: (VI. 18.)

then, because as AB to CD, so is FF to PB,
and that upon AB, CD are described the similar and similarly

situated rectilineals KAB, LCD,
and upon FF, PB, in like manner, the similar rectilineals MF, SB

;

therefore KAB is to ZOD, as MF to SB :

but by the hypothesis KAB is to LCD, as JfFto iV//;

and therefore the rectilineal MF having the same ratio to each of the

two NH, SB,
these are equal to one another

;
(v. 9.)

they are also similar, and similiarly situated

;

therefore GH is equal to PR :

and because as AB to CD, so is FF to PR,
and that PR is equal to GH;

AB is to CD, as FF to GH. (v. 7.)

If therefore, four straight lines, &c. Q.E.D.

PROPOSITION XXIII. THEOREM.
Equiangular parallelograms have to one another the ratio which is

compounded of the ratios of their sides.

Let A C, CFbe equiangular parallelograms, having the angle BCD
equal to the angle FCG.

Then the ratio of the parallelogram A C to the parallelogram CF,
shall be the same with the ratio which is compounded of the ratios of

their sides.

A H II
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Let BC, CG be placed in a straight line;

therefore DC and CE are also in a straight line; (I, 14*)

and complete the parallelogram DG;
and taking any straight line K,

make as BC to CG, so K to L
;

(vi. 12.)

and as DC to CE, so make X to 31; (vl. 12.)

therefore, the ratios of iT to L, and Z to Jf, are the same with the

ratios of the sides,

viz. of BC to CG, and DC to CE:
but the ratio ofK to J/ is that which is said to be compounded of

the ratios ofK to L, and L to 31; (v. def. A.)

therefore K has to 31 the ratio compounded of the ratios of the sides

:

and because as BC to CG, so is the parallelogram A C to the paral-

lelogram CH; (VI. 1.)

but as BC to CG, so is X to L

;

therefore iTis to Z, as the parallelogram AC to the parallelogram

CH: (V. 11.)

again, because as DC to CE, so is the parallelogram CH to the

parallelogram CF;
but as DC to CE, so is L to J/;

wherefore X is to 31, as the parallelogram CH to the parallelogram

CF; (v. 11.)

therefore since it has been proved,

that as .ST to L, so is the parallelogram AC to the parallelogram CH;
and as L to M, so is the parallelogram CH to the parallelogram CF;
ex sequali, K is to 31, as the parallelogram AC to the parallelogram

CF: (V. 22.)

but K has to iJf the ratio which is compounded of the ratios of the

sides
;

therefore also the parallelogram ^IChas to the parallelogram CF,
the ratio which is compounded of the ratios of the sides.

Wherefore, equiangular parallelograms, &c. Q.E.D.

PROPOSITION XXIV. THEOREM.
Parallelograms about the diameter of any parallelogram, are similar to

the whole, and to one another.

Let ABCD be a parallelogram, of which the diameter is AC;
and EG, HK parallelograms about the diameter.

The parallelograms EG, HK shall be similar both to the whole
parallelogram ABCD, and to one another.

A E B

D K C

Because DC, GF are parallels,

the angle ADC is equal to the angle AGE: (I. 29.)

for the same reason, because BC, FFare parallels,

the angle ABC is equal to the angle AEF:
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and each of the angles BCD, EFG is equal to the opposite angle

DAB, (I. 34.)

and therefore they are equal to one another

:

wherefore the parallelograms ABCD, AEFG, are equiangular :

and because the angle ABC is equal to the angle AEF,
and the angle ^iCcommon to the two triangles BAC, EAF,

they are equiangular to one another
;

therefore as AB to BC, so is AE to EF: (vi. 4.)

and because the opposite sides of parallelograms are equal to one
another, (I. 34.)

AB is to AD as AE to AG; (v. 7.)

and DC to CB, as GF to FE ;

and also CD to DA, as FG to GA :

therefore the sides of the parallelograms ABCD, AEFG about the

equal angles are proportionals

;

and they are therefore similar to one another; (VI. def. 1.)

for the same reason, the parallelogram ABCD is similar to the

parallelogram FUCK:
wherefore each of the parallelograms GE, KHh similar to DB:

but rectilineal figures which are similar to the same rectilineal figure,

are also similar to one another: (VI. 21.)

therefore the parallelogram GE is similar to KM.
Wherefore, parallelograms, &c. q.e.d.

PROPOSITION XXV. PROBLEM.

To describe a rectilineal figure which shall be similar to one, and equal

to another given rectilinealfigure.

Let ABC he the given rectilineal figure, to which the figure to be
described is required to be similar, and D that to which it must be
equal.

It is required to describe a rectilineal figure similar to ABC, and
equal to D.

AA s

G H
_J

L E

Upon the straight line BC describe the parallelogram BE equal to

the figure ABC; (I. 45. Cor.)

also upon CE describe the parallelogram CM equal to D, (I. 45. Cor.)

and having the angle FCE equal to the angle CBL

:

therefore jBOand CF are in a straight line, as also LE and EM:
(I. 29. and I. 14.)

between J5Cand CFfind a mean proportional Gil, (VI. 13.)

and upon GH describe the rectilineal figure KGH similar and simi-

larly situated to the figure ABC. (VI. 18.)

Because BChto Gil as GHto CF,
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and that if three straight lines be proportionals, as the first is to

the third, so is the figure upon the first to the similar and similarly

described figure upon the second
;

(vi. 20. Cor. 2.)

therefore, as BC to CF, so is the rectilineal figure ABC to KGH:
but as BC to CF, so is the parallelogram BE to the parallelogram

EF; (VI. 1.)

therefore as the rectilineal figure ABC is to KGH, so is the paral-

lelogram BE to the parallelogram EF: (v. 11.)

and the rectilineal figure ABC is equal to the parallelogram BE.
(constr.)

therefore the rectilineal figure KGH is equal to the parallelogram

EF: (v. 14.)

but EF is equal to the figure D
;
(constr.)

wherefore also KGH is equal to D : and it is similar to ABC.
Therefore the rectilineal figure KGH has been described similar to

the figure ABC, and equal to D. Q.E.F.

PROPOSITION XXVI. THEOREM.

If two similar parallelograms have a common angle, and be similarly

situated ; they are about the same diameter.

Let the parallelograms ABCD, AEFG be similar and similarly

situated, and have the angle DAB common.
ABCD and AEFG shall be about the same diameter.

For if not, let, if possible, the parallelogram BD have its diameter

A 11C in a different straight line from AF, the diameter of the paral-

lelogram EG,
and let GF meet ARC in H;

and through II draAv HK parallel to AD or BC;
therefore the parallelograms ABCD, AKIIG being about the same

diameter, they are similar to one another
;

(vi. 24.)

wherefore as DA to AB, so is GA to AK: (vi. def. 1.)

but because ABCD and AEFG are similar parallelograms, (hyp.)

as DA is to AB, so is GA to AE

;

therefore as GA to AE, so GA to AK; (v. 11.)

that is, GA has the same ratio to each of the straight lines AE, AK\
and consequently AK is equal to AE, (v. 9.)

the less equal to the greater, which is impossible

:

therefore ABCD and AKIIG are not about the same diameter:

wherefore ABCD and AEFG must be about the same diameter.

Therefore, if two similar, &c. Q.E.D.
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PROPOSITION XXVII. THEOREM.

Of all parallelograms applied to the same straight line, and deficient by

parallelograms, si?nilar and similarly situated to that which is described

upon the half of the line; that which is applied to the half and is similar

to its defect, is the greatest.

Let AB be a straight line divided into two equal parts in C

;

and let the parallelogram AD be applied to the half A C, which is

therefore deficient from the parallelogram upon the whole line AB by
the parallelogram CE upon the other half CB :

of all the parallelograms applied to any other parts of AB, and
deficient by parallelograms that are similar and similarly situated to

CE, AD shall be the greatest.

Let AF be any parallelogram applied to AK, any other part ofAB
than the half, so as to be deficient from the parallelogram upon the

whole line AB by the parallelogram KH similar and similarly situ-

ated to CE:
DL E

A C K B

AD shall be greater than AF.
First, let AK the base of AF, be greater than A C the half of AB

:

and because CE is similar to the parallelogram HK, (hyp.)

they are about the same diameter : (VI. 26.)

draw their diameter DB, and complete the scheme :

then, because the parallelogram CF is equal to FE, (I. 43.)

add KH to both

:

therefore the whole CH is equal to the whole KE:
but CH is equal to CG, (i. 36.)

because the base A C is equal to the base CB
;

therefore CG is equal to KE: (ax. 1.)

to each of these equals add CF;
then the whole AF is equal to the gnomon CHL : (ax. 2.)

therefore CE, or the parallelogram AD is greater than the paral-

lelogram AF.
Next, let .4.57 the base of AFbe less than AC:

G F M H

then, the same construction being made, because BC is equal to (7-4,

therefore H3Iis equal to MG-, (i. 34.]
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therefore the parallelogram JDHis equal to the parallelogram DG\
(L 36.)

wherefore DHis greater than LG :

but JDIIk equal to EX: (i. 43.)

therefore DXh greater than LG:
to each of these acid AL

;

then the whole AD is greater than the whole AF.
Therefore, of all parallelograms applied, &c. q. e. d.

PROPOSITION XXVIII. PROBLEM.

To a given straight line to apply a parallelogram equal to a given
rectilinealfigure , and deficient by a parallelogram similar to a given paral-
lelogram : but the given rectilineal figure to which the parallelogram to be
applied is to be equal, must not be greater than the parallelogram applied to

half of the given line, having its defect similar to the defect of that which is

to be applied ; that is, to the given parallelogram.

Let AJB be the given straight line, and Cthe given rectilineal figure,

to which the parallelogram to be applied is required to be equal, which
figure must not be greater (vi. 27.) than the parallelogram applied to

the half of the line, having its defect from that upon the whole line

similar to the defect of that which is to be applied

;

and let D be the parallelogram to which this defect is required to be
similar.

It is required to apply a parallelogram to the straight line AB,
which shall be equal to the figure C, and be deficient from the paral-

lelogram upon the whole line by a parallelogram similar to D.
Divide AJB into two equal parts in the point E, (I. 10.)

and upon EB describe the parallelogram EBFG similar and simi-

larly situated to D, (vi. 18.)

and complete the parallelogram AG, which must either be equal to

C, or greater than it, by the determination.

IfA G be equal to C, then what Avas required is already done :

H G . F

L M

K A"

for, upon the straight line AB, the parallelogram A G is applied equal

to the figure C, and deficient by the parallelogram EF similar to I).

But, if A G be not equal to C, it is greater than it

:

and EFis equal to AG: (I. 36.)

therefore EF also is greater than C.

Make the parallelogram XLMN equal to the excess of EF above

C, and similar and similarly situated to D : (vi. 25.)

then, since D is similar to EF, (constr.)

therefore also XM is similar to EF, (vi. 21.)

et KL be the homologous side to EG, and L3I to GF%
and because EFis equal to C and KM together;
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EF is greater than KM;
thereforo the straight line EG is greater than KL, and OF than L31:

make GX equal to LK, and GO equal to LM, (I. 3.)

and complete the parallelogram XGOP: (I. 31.)

therefore XO is equal and similar to JOf

:

but JOf is similar to EF;
wherefore also XO is similar to EF;

and therefore XO and i£F are about the same diameter : (VI. 26.)

let GPB be their diameter and complete the scheme.

Then, because EF is equal to C and JOf together,

and XO apart of the one is equal to JOf a part of the other,

the remainder, viz. the gnomon ERO, is equal to the remainder C:

(ax. 3.)

and because OR is equal to XS, by adding SR to each, (i. 43.)

the whole OB is equal to the whole XB

:

but XB is equal to TE, because the base AE is equal to the base

EB; (1.36.)

wherefore also TE is equal to OB : (ax. 1.)

add XS to each, then the whole TS is equal to the whole, viz. to

the gnomon ERO :

but it has been proved that the gnomon ERO is equal to C;
and therefore also TS is equal to C.

Wherefore the parallelogram TS, equal to the given rectilineal

figure C, is applied to the given straight line AB, deficient by the

parallelogram SR, similar to the given one D, because SR is similar

to EF. (VI. 24.) Q.E.F.

PROPOSITION XXIX. PROBLEM.

To a given straight line to apply a parallelogram equal to a given recti-

linealfigure, exceeding by a parallelogram similar to another given.

Let AB be the given straight line, and Cthe given rectilineal figure

to which the parallelogram to be applied is required to be equal, andD
the parallelogram to which the excess of the one to be applied above
that upon the given line is required to be similar.

It is required to apply a parallelogram to the given straight line

AB which shall be equal to the figure C, exceeding by a parallelogram
similar to Z).

Divide AB into two equal parts in the point E, (I. 10.) and upon
EB describe the parallelogram EL similar and similarly situated to

D: (VI. 18.)

and make the parallelogram GIT equal to EL and C together, and
similar and similarly situated to D : (VI. 25.)

wherefore GIT is similar to EL: (vi. 21.)
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let KH be the side homologous to FL, and KG to FE:
and because the parallelogram GH is greater than FL,

therefore the side KH is greater than FL,
and KG than FE

:

produce FL and FE, and make FLM equal to KH, and FEN to KQ%

and complete the parallelogram ilfJV:

MN is therefore equal and similar to GH:
but 6r-ET is similar to EL

;

wherefore MN is similar to EL

;

and consequently i^X and JfiVare about the same diameter: (VI. 26.)

draw their diameter FX, ana complete the scheme.

Therefore, since GH is equal to EL and C together,

and that GH is equal to 3IN;
MN is equal to EL and C

:

take away the common part EL
;

then the remainder, viz. the gnomon NOL, is equal to C.

And because AE is equal to EB,
the parallelogram .4JV is equal to the parallelogram NB, (1. 36.)

that is, to BM: (i. 43.)

add iVO to each

;

therefore the whole, viz. the parallelogram AX, is equal to the

gnomon NOL

:

but the gnomon NOL is equal to C;
therefore also AX is equal to C.

Wherefore to the straight line AB there is applied the parallelo-

gram AX equal to the given rectilineal figure C, exceeding by the

parallelogram FO, which is similar to D, because PO is similar to

EL. (VI. 24.) q.e.f.

PROPOSITION XXX. PROBLEM.
To cut a given straight line in extreme and mean ratio.

Let AB be the given straight line.

It is required to cut it in extreme and mean ratio.

1)

EB

Upon AB describe the square BC, (i. 46.)

and to -4 C apply the parallelogram CD, equal to BC, exceeding by
the figure AD similar to BC: (vi. 29.)

then, since .BC is a square,

therefore also AD is a square :

and because BC is equal to CD,
by taking the common part CE from each,

the remainder BF is equal to the remainder ADx
and these figures are equiangular,
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therefore their sides about the equal angles are reciprocally propor-

tional: (vi. 14.)

therefore, as FE to ED, so AE to EB

:

but FE is equal to A C, (i. 34) that is, to AB
;

(def. 30.)

and ED is equal to AE
;

therefore as BA to AE, so is, AE to i£2?

:

but AB is greater than AE;
wherefore AE is greater than EB : (v. 14.)

therefore the straight line AB is cut in extreme and mean ratio in

E. (vi. def. 3.) q.e.f.

Otherwise,

Let AB be the given straight line.

It is required to cut it in extreme and mean ratio,

A c B

Divide AB in the point C, so that the rectangle contained by AB,
BC, may be equal to the square on AC. (II. 11.)

Then, because the rectangle AB, BC is equal to the square on AC;
as BA to AC, so is AC to CB : (vi. 17.)

therefore AB is cut in extreme and mean ratio in C. (VI. def. 3.)

Q.E.F.

PROPOSITION XXXI. THEOREM.
In right-angled triangles, the rectilineal figure described upon the side op-

posite to the right angle, is equal to the similar and similarly describedfigures

upon the sides containing the right angle.

Let ABC he a right-angled triangle, having the right angle BAG.
The rectilineal figure described upon BC shall be equal to the

similar and similarly described figures upon BA, AC.

Draw the perpendicular AD : (i. 12.)

therefore, because in the right-angled triangle ABC,
AD is drawn from the right angle at A perpendicular to the base BC,

the triangles ABD, ADC&ve similar to the whole triangle ABC,
and to one another : (vi. 8.)

and because the triangle ABC is similar to ADB,
as CB to BA, so is BA to BD : (VI. 4.)

and because these three straight lines are proportionals,

as the first is to the third, so is the figure upon the first to the similar

and similarly described figure upon the second : (VI. 20. Cor. 2.)

therefore as CB to BD, so is the figure upon CB to the similar and
similarly described figure upon BA :

and inversely, as DB to BC, so is the figure upon BA to that upon
BC: (v. B.)
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for the same reason, as DC to CB, so is the figure upon CA to that
upon CB:

therefore as BD and DC together to BC, so are the figures upon
BA, AC to that upon BC: (v. 24.)

but i?D and DC together are equal to BC;
therefore the figure described on BC is equal to the similar and

similarly described figures on BA, A C. (v. A.)

Wherefore, in right-angled triangles, &c. Q.E.D.

PROPOSITION XXXII. THEOREM.

If two triangles which have two sides of the one proportional to tico sides

of the other, be joined at one angle, so as to have their homologous sides
parallel to one another ; the remaining sides shall be in a straight line.

Let ABC, DCE be two triangles which have the two sides BA,
A C proportional to the two CD, DE,

viz. BA to AC, as CD to DE;
and let AB be parallel to DC, and AC to DE.

Then BC and CE shall be in a straight line.

Because AB is parallel to DC, and the straight line AC meets them,
the alternate angles BA C, A CD are equal

;
(i. 29.)

for the same reason, the angle CDE is equal to the angle A CD
;

wherefore also BAC is equal to CDE : (ax. 1.)

and because the triangles ABC, DCEho.\e one angle at A equal to

one at D, and the sides about these angles proportionals,

viz. BA to A C, as CD to DE,
the triangle ABC is equiangular to DCE: (vi. 6.)

therefore the angle ABC is equal to the angle DCE

:

and the angle BA C was proved to be equal to A CD
;

therefore the whole angle ACE is equal to the two angles ABC
BAG: (ax. 2.)

add to each of these equals the common angle A CB,
then the angles A CE, A CB are equal to the anglesAB C, BA C,ACB:

but ABC, BAC, ACB are equal to two right angles: (I. 32.)

therefore also the angles A CE, A CB are equal to two right angles i

and since at the point C, in the straight line A C, the two straight

linos BC, CE, which are on the opposite sides of it, make the adjacent

angles A CE, A CB equal to two right angles
;

therefore BC and CE are in a straight line. (i. 14.)

Wherefore, if two triangles, &c. q 5e,D.
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PROPOSITION XXXIII. THEOREM.
In equal circles, angles, whether at the centers or circumferences, have

the same ratio which the circumferences on which they stand have to one

another: so also have the sectors.

Let ABC, DEFhe equal circles; and at their centers the angles

BGC, EHF, and the angles BAC, EDF, at their circumferences.

As the circumference BC to the circumference EF, so shall the

angle BGC be to the angle ERF, and the angle BAC to the

angle EDF;
and also the sector BGC to the sector EHF.

Take any number of circumferences CK, XL, each equal to BC,
and any number whatever FM, MN, each equal to EF:

and join GK, GL, HM, UN.
Because the circumferences BC, CK, KL are all equal,

the angles BGC, CGK, KGL are also all equal : (in. 27.)

therefore what multiple soever the circumference BL is of the cir-

cumference BC, the same multiple is the angle BGL of the angle
BGC:

for the same reason, whatever multiple the circumference EN is of

the circumference EF, the same multiple is the angle EHN of the
angle EHF:
and if the circumference BL be equal to the circumference EN,

the angle BGL is also equal to the angle EHN; (in. 27.)

and if the circumference BL be greater than EN,
likewise the angle BGL is greater than EHN; and if less, less:

therefore, since there are four magnitudes, the two circumferences

BC, EF, and the two angles BGC, EHF; and that of the circum-

ference BC, and of the angle BGC, have been taken any equimultiples

whatever, viz. the circumference BL, and the angle BGL ; and of the

circumference EF, and of the angle EHF, any equimultiples what-
ever, viz. the circumference EN, and the angle EHN:
and since it has been proved, that if the circumference BL be greater

than EN;
the angle BGL is greater than EHN;
and if equal, equal ; and if less, less

;

therefore as the circumference BC to the circumference EF, so in the

angle BGC to the angle EHF: (v. def. 5.)

but as the angle BGC is to the angle EHF, so is the angle BA

C

to

the angle EDF: (v. 15.)

for each is double of each
;

(ill. 20.)

therefore, as the circumference BCis to EF, so is the angle BGCtQ
the angle MUF, and the angle BAC to the angle EDF.
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Also, as the circumference BC to EF, so shall the sector BGC he
to the sector EHF.

Join BC, CK, and in the circumferences, BC, CK, take any points

X, O, and join BX, XC, CO, OK.
Then, because in the triangles GBC, GCK,

the two sides BG, GCare equal to the two CG, GK each to each,

and that they contain equal angles
;

the base BC is equal to the base CK, (I. 4.)

and the triangle GBC to the triangle GCK:
and because the circumference BC is equal to the circumference CK,

the remaining part of the whole circumference of the circle ABC, is

equal to the remaining part of the whole circumference of the same
circle : (ax. 3.)

therefore the angle BXCis equal to the angle COK; (ill. 27.)

and the segment BXC is therefore similar to the segment COK]
(ill. def. 11.)

and they are upon equal straight lines, BC, CK:
but similar segments of circles upon equal straigb* lines, are equal

to one another: (III. 24.)

therefore the segment BXC is equal to the segment COK:
and the triangle BGC was proved to be equal to the triangle CGK;
therefore the whole, the sector BGC, is equal to the whole, the

sector CGK:
for the same reason, the sector KGL is equal to each of the sectors

BGC, CGK:
in the same manner, the sectors EHF, FHM, MHN may be

proved equal to one another

:

therefore, what multiple soever the circumference BL is of the circum-

ference BC, the same multiple is the sector BGL of the sector BGC

;

and for the same reason, whatever multiple the circumference EN
is of EF, the same multiple is the sector EHN of the sector

EHF:
and if the circumference BL be equal to EN, the sector BGL is

equal to the sector EHN;
and if the circumference BL be greater than EN, the sector BGL

is greater than the sector EHN;
and if less, less

;

since, then, there are four magnitudes, the two circumferences BC,
EF, and the two sectors BGC, EHF, and that of the circumference

BC, and sector BGC, the circumference BL and sector BGL are any

equimultiples whatever; and of the circumference EF, and sector

EHF, the circumference EN, and sector EHN are any equimultiples

whatever

:
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and since it has been proved, that if the circumference BL be greater

than EN, the sector BGL is greater than the sector EHN;
and if equal, equal ; and if less, less :

therefore, as the circumference EC is to the circumference EF, so

is the sector BGC to the sector EHF. (v. def. 5.)

Wherefore, in equal circles, &c. Q.E.D.

PROPOSITION B. THEOREM.

If an angle of a triangle be bisected by a straight line tohich likewise cuts

the base ; the rectangle contained by the sides of the triangle is equal to the

rectangle contained by the segments of the base, together with the square on

the straight line which bisects the angle.

Let ABC he a triangle, and let the angle EACbe bisected by the
straight line AD.

The rectangle BA, AC shall be equal to the rectangle BD. DC,
together with the square on AD.

A

E
Describe the circle A CB about the triangle, (IV. 5.)

and produce AD to the circumference in E, and join EC.
Then because the angle BAD is equal to the angle CAE, (hyp.)

and the angle ABD to the angle AEC, (ill. 21.)

for they are in the same segment

;

the triangles ABD,AEC are equiangular to one another : (i. 32.)

therefore as BA to AD, so is EA to AC-, (VI. 4.)

and consequently the rectangle BA, AC is equal to the rectangle EA»
AD, (vi. 16.)

that is, to the rectangle ED, DA, together with the square on AD;
(II. 3.)

but the rectangle ED, DA is equal to the rectangle BD, DC-, (ill. 35.)

therefore the rectangle BA, AC is equal to the rectangle BD, DC,
together with the square on AD.

Wherefore, if an angle, &c. Q.E.D.

PROPOSITION C. THEOREM.

Iffrom any angle of a triangle, a straight line be drawn perpendicular to

the base ; the rectangle contained by the sides of the triangle is equal to the

rectangle contained by the perpendicular and the diameter of the circle de-
scribed about the triangle.

Let ABC he a triangle, and AD the perpendicular from the angle
A to the base BC.

The rectangle BA, AC shall be equal to the rectangle contained by
AD and the diameter of the circle described about the triangle.
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Describe the circle A CB about the triangle, (iv. 5.) and draw its

diameter AB, and join BC.
Because the right angle BDA is equal to the angle BCA in a

semicircle, (in. 31.)

and the angle ABD equal to the angleABC in the same segment;
(III. 21.) the triangles ABB, ABC are equiangular:

therefore as BA to AD, so is BA to AC; (VI. 4.)

and consequently the rectangle BA, ACis equal to the rectangle BA,
AD. (vi. 16.) If therefore from any angle, &c. Q.E.D.

PROPOSITION D. THEOREM.
The rectangle contained by the diagonals of a quadrilateralfigure inscribed

in a circle, is equal to both the rectangles contained by its opposite sides.

Let ABCD be any quadrilateral figure inscribed in a circle, and
]om AC, BD.

The rectangle contained by A C, BD shall be equal to the two
rectangles contained by AB, CD, and by AD, BC.

Make the angle ABB equal to the angle DBC: (I. 23.)

add to each of these equals the common angle BBD,
then the angle ABD is equal to the angle BBC:

and the angle BDA is equal to the angle BCB, because they are

in the same segment: (III. 21.)

therefore the triangle ABD is equiangular to the triangle BCB:
wherefore, as BCis to CB, so is BD to DA

;
(vi. 4.)

and consequently the rectangle BC, AD is equal to the rectangle

BD, CB: (VI. 16.)

again, because the angle ABE is equal to the angle DBC, and the

angle BAB to the angle BBC, (ill. 21.)

the triangle ABB is equiangular to the triangle BCD :

therefore as BA to AB, so is BD to DC;
wherefore the rectangle BA, DC is equal to the rectangle BD, AB:

but the rectangle BC, AD has been shewn to be equal

to the rectangle BD, CB
;

therefore the whole rectangle AC, BDk equal to the rectangle

AB, DC, together with the rectangle AD, BC. (II. 1.)

Therefore the rectangle, &c. Q. E. D.

This is a Lemma of CI. Ptolcmccus, in page 9 of his MtydXn Stfiwo^ts,
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In this Book, the theory of proportion exhibited in the Fifth Book, is

applied to the comparison of the sides and areas of plane rectilineal figures,

both of those which are similar, and of those which are not similar.

Def. i. In defining similar triangles, one condition is sufficient, namely,
that similar triangles are those which have their three angles respectively

equal ; as in Prop. 4, Book vi, it is proved that the sides about the equal

angles of equiangular triangles are proportionals. But in denning similar

figures of more than three sides, both of the conditions stated in Def. i,

are requisite, as it is obvious, for instance, in the case of a square and a

rectangle, which, have their angles respectively equal, but have not their

sides about their equal angles proportionals.

The following definition has been proposed :
" Similar rectilineal

figures of more than three sides, are those which may be divided into the

same number of similar triangles." This definition, would, if adopted,

require the omission of a part of Prop. 20, Book vi.

Def. in. To this definition may be added the following :

A straight line is said to be divided harmonically, when it is divided

into three parts, such that the whole line is to one of the extreme segments,
as the other extreme segment is to the middle part. Three lines are ir.

harmonical proportion, when the first is to the third, as the difference be-

tween the first and second, is to the difference between the second and
third ; and the second is called a harmonic mean between the first and third.

The expression ' harmonical proportion' is derived from the following

fact in the Science of Acoustics, that three musical strings of the same
material, thickness and tension, when divided in the manner stated in the
definition, or numerically as 6, 4, and 3, produce a certain musical note,

its fifth, and its octave.

Def. rv. The term altitude, as applied to the same triangles and paral-

lelograms, will be different according to the sides which may be assumed
as the base, unless they are equilateral.

Prop. i. In the same manner may be proved, that triangles and paral-

lelograms upon equal bases, are to one another as their altitudes.

Prop. a. "When the triangle ABC is isosceles, the line which bisects

the exterior angle at the vertex is parallel to the base. In all other cases,

if the line which bisects the angle BAC cut the base iJCin the point G,
then the straight line BD is harmonically divided in the points G, C.

For BG is to GC as BA is to AC
;

(vi. 3.)

and BD is to DC as BA is to AC, (vi. a.)

therefore BD is to DC as BG is to GC,

but BG = BD - DG, and GC = GD - DC.

Wherefore BD is to DC as BD - DG is to GD - DC.
Hence BD, DG, DC, are in harmonical proportion.

Prop, iv is the first case of similar triangles, and corresponds to the
third case of equal triangles, Prop. 26. Book i.
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Sometimes the sides opposite to the equal angles in two equiangular
triangles, are called the corresponding sides, and these are said to be pro-
portional, which is simply taking the proportion in Euclid alternately.

The term homologous (d/xdA-oyov), has reference to the places the sides

of the triangles have in the ratios, and in one sense, homologous sides may
be considered as corresponding sides. The homologous sides of any two
similar rectilineal figures will be found to be those which are adjacent to

two equal angles in each figure.

Prop, v, the converse of Prop, iv, is the second case of similar triangles,

and corresponds to Prop. 8, Book i, the second case of equal triangles.

Prop, vi is the third case of similar triangles, and corresponds to Prop.
4, Book i, the first case of equal triangles.

The property of similar triangles, and that contained in Prop. 47, Book
I, are the most important theorems in Geometry.

Prop, vn is the fourth case of similar triangles, and corresponds to the
fourth case of equal triangles demonstrated in the note to Prop. 26, Book i.

Prop. ix. The learner here must not forget the different meanings of

the word part, as employed in the Elements. The word here has the
same meaning as in Euc. v. def. 1.

It may be remarked, that this proposition is a more simple case of the
next, namely, Prop. x.

Prop. xi. This proposition is that particular case of Prop, xu, in which
the second and third terms of the proportion are equal. These two
problems exhibit the same results by a Geometrical construction, as are

obtained by numerical multiplication and division.

Prop. xin. The difference in the two propositions Euc. it. 14, and
Euc. vi. 13, is this : in the Second Book, the problem is, to make a rect-

angular figure or square equal in area to an irregular rectilinear figure,

in which the idea of ratio is not introduced. In the Prop, in the Sixth
Book, the problem relates to ratios only, and it requires to divide a line

into two parts, so that the ratio of the whole line to the greater segment
may be the same as the ratio of the greater segment to the less.

The result in this proposition obtained by a Geometrical construction,

is analogous to that which is obtained by the multiplication of two
numbers, and the extraction of the square root of the product.

It may be observed, that half the sum of AB and BC is called the
Arithmetic mean between these lines ; also that BD is called the Geo-
metric mean between the same lines.

To find two mean proportionals between two given lines is impossible

by the straight line and circle. Pappus has given several solutions of

this problem in Book in, of his Mathematical Collections ; and Eutocius

has given, in his Commentary on the Sphere and Cylinder of Archimedes,
ten different methods of solving this problem.

Prop, xiv depends on the same principle as Prop, xv, and both may
easily be demonstrated from one diagram. Join DF, FE, EG in the fig.

to Prop, xiv, and the figure to Prop, xv is formed. We may add, that

there does not appear any reason why the properties of the triangle and
parallelogram should be here separated, and not in the first proposition of

the Sixth Book.
Prop, xv holds good when one angle of one triangle is equal to the

defect from what the corresponding angle in the other wants of two right

angles.

This theorem will perhaps be more distinctly comprehended by the

learner, if he will bear in mind, that four magnitudes are reciprocally
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proportional, when the ratio compounded of these ratios is a ratio of

equality.

Prop, xvii is only a particular case of Prop, xvi, and more properly,

might appear as a corollary : and both are cases of Prop. xiv.

Algebraically, Let AB, CD, E, F, contain a, b, c, d units respectively

Oi c
Then, since a, b, c, d are proportionals, .*-=-.

o d

Multiply these equals by bd, .*. ad = be,

or, the product of the extremes is equal to the product of the means.
And conversely, If the product of the extremes be equal to the pro-

duct of the means,
or ad = be,

then, dividing these equals by bd, .'. - = -
,

b d

or the ratio of the first to the second number, is equal to the ratio of the

third to the fourth.

Similarly may be shewn, that if 7 = -
; then ad=b9

.

b d

And conversely, if 2d= b
%

; then - = - .

o d

Prop, xviii. Similar figures ire said to be similarly situated, when
their homologous sides are parallel, as when the figures are situated on
the same straight line, or on parallel lines : but when similar figures are

situated on the sides of a triangle, the similar figures are said to be similarly

situated when the homologcas sides of each figure have the same re-

lative position with respect f o one another ; that is if the bases on which
the similar figures stand, were placed parallel to one another, the re-

maining sides of the figures, if similarly situated, would also be parallel

to one another.

Prop. xx. It may easily be shewn, that the perimeters of similar

polygons, are proportional to their homologous sides.

Prop. xxr. This proposition must be so understood as to include all

rectilineal figures whatsoever, which require for the conditions of simila-

rity another condition than is required for the similarity of triangles

See note on Euc. vi. Def. i.

Prop, xxiii. The doctrine of compound ratio, including duplicate and
triplicate ratio, in the form in which it was propounded and practised by
the ancient Geometers, has been almost wholly superseded. Howevei
satisfactory for the purposes of exact reasoning the method of expressing
the ratio of two surfaces, or of two solids by two straight lines, may be in

itself, it has not been found to be the form best suited for the direct ap-

plication of the results of Geometry. Almost all modern writers on Geo-
metry and its applications to every branch of the Mathematical Sciences,

have adopted the algebraical notation of a quotient AB : BC ; or of a

. AB
traction —- ; for expressing the ratio of two lines AB, BC : as well as that

of a product AB x BC, or AB .BC, for the expression of a rectangle.

The want of a concise and expressive method of notation to indicate the
proportion of Geometrical Magnitudes in a form suited for the direct ap-
plication of the results, has doubtless favoured the introduction of Alge-
braical symbols into the language of Geometry. It must be admitted,
however, that such notations in the language of pure Geometry are liable

5
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to very serious objections, chiefly on the ground that pure Geometry does
not admit the Arithmetical or Algebraical idea of a product or a quotient

into its reasonings. On the other hand, it may be urged, that it is not
the employment of symbols which renders a process of reasoning pecu«
liarly Geometrical or Algebraical, but the ideas which are expressed by
them. If symbols be employed in Geometrical reasonings, and be under-
stood to express the magnitudes themselves and the conception of their Geo-
metrical ratio, and not any measures, or numerical values of them, there
would not appear to be any very great objections to their use, provided
that the notations employed were such as are not likely to lead to mis-
conception. It is, however, desirable, for the sake of avoiding confusion
of ideas in reasoning on the properties of number and of magnitude, that
the language and notations employed both ha Geometry and Algebra
should be rigidly defined and strictly adhered to, in all cases. At the
commencement of his Geometrical studies, the student is recommended
not to employ the symbols of Algebra in Geometrical demonstrations.
Hoav far it may be necessary or advisable to employ them when he fully

understands the nature of the subject, is a question on which some diffe-

rence of opinion exists.

Prop. xxv. There does not appear any sufficient reason why this pro-
position is placed between Prop. xxiv. and Prop. xxvi.

Prop, xxvii. To understand this and the three following proposi-

tions more easily, it is to be observed :

1. " That a parallelogram is said to bo applied to a straight line, when
it is described upon it as one of its sides. Ex. gr. the parallelogram AC
is said to be applied to the straight line AC.

2. But a parallelogram AE is said to he applied to a straight line

AB, deficient by a parallelogram, when AD the base of AE is less than
AB, and therefore AE is less than the parallelogram AC described upon
AB in the same angle, and between the same parallels, by the parallelo-

gram DC; and DC is therefore called the defect of AE.
3. And a parallelogram AG is said to be applied to a straight line

AB, exceeding by a parallelogiam, when AF the base of A G is greater

than AB, and therefore AG exceeds AC the parallelogram described

upon AB in the same angle, and between the same parallels, by the

parallelogram BG."—Simson.
Both among Euclid's Theorems and Problems, cases occur in which

the hypotheses of the one, and the data or qutesita of the other, are

restricted within certain limits as to magnitude and position. The
determination of these limits constitutes the doctrine of Maxima and
Minima. Thus :—The theorem Euc. vi. 27 is a case of the maximum
value which a figure fulfilling the other conditions can have ; and the

succeeding proposition is a problem involving this fact among the

conditions as a part of the data, in truth, perfectly analogous to Euc. i.

20, 22 ; wherein the limit of possible diminution of the sum of the two
sides of a triangle described upon a given base, is the magnitude of

the base itself : the limit of the side of a square which shall be equal to

the rectangle of the two parts into which a given line may be divided,

is half the line, as it appears from Euc. ii. 5 :

—

the greatest line that can

be drawn from a given point within a circle, to the circumference,

Euc. in. 7, is the line which passes through the center of the circle

;

and the least line which can be so drawn from the same point, is the part

produced, of the greatest line between the given point and the circum-

ference. Euc. in. 8, also affords another instance of a maximum and a

"unimum when the given point is outsidp the given circle.
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Prop. xxxi. This proposition is the general ease of Prop. 47, Book I,

for any similar rectilineal figure described on the sides of a right-angled

triangle. The demonstration, however, here given is wholly independent

ofEuc. i. 47.

Prop, xxxiii. In the demonstration of this important proposition,

angles greater than two right angles are employed, in accordance with
the criterion of proportionality laid down in Euc. v. def. 5.

This proposition forms the basis of the assumption of arcs of circles

for the measures of angles at their centers. One magnitude may be as-

sumed as the measure of another magnitude of a different kind, when the

two are so connected, that any variation in them takes place simultane-

ously, and in the same direct proportion. This being the case with
angles at the center of a circle," and the arcs subtended by them ; the

arcs of circles can be assumed as the measures of the angles they subtend

at the center of the circle.

Prop. b. The converse of this proposition does not hold good when
the triangle is isosceles.

QUESTIONS ON BOOK VI.

1. Distinguish between similar figures and equal figures.

2. What is the distinction between homologous sides, and equal sides

in Geometrical figures ?

3. What is the number of conditions requisite to determine similarity

of figures ? Is the number of conditions in Euclid's definition of similar

figures greater than what is necessary ? Propose a definition of similar

figures which includes no superfluous condition.

4. Explain how Euclid makes use of the definition of proportion in

Euc. vi. 1.

5. Prove that triangles on the same base are to one another as their

altitudes.

6. If two triangles of the same altitude have their bases unequal,
and if one ofthem be divided into m equal parts, and if the other contain
n of those parts

;
prove that the triangles have the same numerical relation

as their bases. Why is this Proposition less general than Euc. vi. 1 ?

7. Are triangles which have one angle of one equal to one angle of

another, and the sides about two other angles proportionals, necessarily

similar ?

8. What are the conditions, considered by Euclid, under which two
triangles are similar to each other ?

9. Apply Euc. vi. 2, to trisect the diagonal of a parallelogram.
10. When are three lines said to be in harmonical proportion? If

both the interior and exterior angles at the vertex of a triangle (Euc vi.

3, a.) be bisected by lines which meet the base, and the base produced,in
D, G ; the segments BG, GD, GC of the base shall be in Harmonical pro-
portion.

11. If the angles at the base of the triangle in the figure Euc. vi. A,
be equal to each other, how is the proposition modified ?

12. Under what circumstances will the bisecting line in the fig. Euc,
vi. A, meet the base on the side of the angle bisected ? Shew that there
is an indeterminate case.
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13. State some of the uses to which Euc. vi. 4, may be applied.

14. Apply Euc. vi. 4, to prove that the rectangle contained by the

segments of any chord passing through a given point within a circle is

constant.

15. Point out clearly the difference in the proofs ofthe two latter cases

in Euc. vi. 7.

16. From the corollary of Euc. vi. 8, deduce a proof of Euc. i. 47.

17. Shew how the last two properties stated in Euc. vi. 8. Cor. may
be deduced from Euc. i. 47 ; ii. 2 ; vi. 17.

18. Given the nth part of a straight line, find by a Geometrical con-

struction, the (n + l)th part.

19. Define what is meant by a mean proportional between two given
lines : and find a mean proportional between the lines whose lengths are

4 and 9 units respectively. Is the method you employ suggested by any
Propositions in any of the first four books ?

20. Determine a third proportional to two lines of 5 and 7 units : and
a fourth proportional to three lines of 5, 7, 9, units.

21. Eind a straight line which shall have to a given straight line, the

ratio of 1 to V5.
22. Define reciprocal figures. Enunciate the propositions proved re-

specting such figures in the Sixth Book.
23. Give the corollary, Euc. vi. 8, and prove thence that the Arith-

metic mean is greater than the Geometric between the same extremes.
24. If two equal triangles have two angles together equal to two

right angles, the sides about those angles are reciprocally proportional.

25. Give Algebraical proofs of Prop. 16 and 17 of Book vi.

26. Enunciate and prove the converse of Euc. vi. 15.

27. Explain what is meant by saying, that " similar triangles are in the

duplicate ratio of their homologous sides."

2S. What are the data which determine triangles both in species and
magnitude ? How are those data expressed in Geometry ?

29. If the ratio of the homologous sides of two triangles be as 1 to

4, what is the ratio of the triangles ? And if the ratio of the triangles be
as 1 to 4, what is the ratio of the homologous sides ?

30. Shew that one of the triangles in the figure, Euc. iv. 10, is a mean
proportional between the other two.

31. What is the algebraical interpretation of Euc. vi. 19 ?

32. Erom your definition of Proportion, prove that the diagonals of

a square are in the same proportion as their sides.

33. What propositions does Euclid prove respecting similar polygons r

34. Theparallelograms about the diameter of a parallelogram are similar

to the whole and to one another. Shew when they are equal.

35. Prove Algebraically, that the areas (1) of similar triangles and (2)

of similar parallelograms are proportional to the squares of their homo-
logous sides.

36. How is it shewn that equiangular parallelograms have to one
another the ratio which is compounded of the ratios of their bases and al-

titudes ?

37. To find two lines which shall have to each other, the ratio com-
pounded of the ratios of the lines A to B, and C to D.

38. State the force of the condition " similarly described ;" and shew
that, on a given straight line, there may be described as many polygons

of different magnitudes, similar to a given polygon, as there are sides of

different lengths in the polygon.
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39. Describe a triangle similar to a given triangle, and having its

area double that of the given triangle.

40. The three sides of a triangle are 7, 8, 9 units respectively; deter-

mine the length of the lines which meeting the base, and the base produced,
bisect the interior angle opposite to the greatest side of the triangle,

and the adjacent exterior angle.

41. The three sides of a triangle are 3, 4, 5 inches respectively ; find

the lengths of the external segments of the sides determined by the lines

which bisect the exterior angles of the triangle.

42. What are the segments into which the hypotenuse of a right-

angled triangle is divided by a perpendicular drawn from the right angle,

if the sides containing it are a and 3a units respectively :

43. If the three sides of a triangle be 3, 4, o units respectively : what
are the parts into which they are divided by the lines which bisect the
angles opposite to them ?

44. If the homologous sides of two triangles be as 3 to 4, and the area

of one triangle be known to contain 100 square units ; how many square
units are contained in the area of the other triangle ?

45. Prove that if BD be taken in AB produced (fig. Euc. vi. 30)
equal to the greater segment AC, then AD is divided in extreme and
mean ratio in the point B.

Shew also, that in the series 1, 1, 2, 3, 5, 8, &c. in which each term is

the sum of the two preceding terms, the last two terms perpetually ap-

proach to the proportion of the segments of a line divided in extreme and
mean ratio. Find a general expression (free from surds) for the nth term
of this series.

46. The parts of a line divided in extreme and mean ratio are incom-
mensurable with each other.

47. Shew that in Euclid's figure (Euc. n. 11.) four other lines, besides

the given line, are divided in the required manner.
48. Enunciate Euc. vi. 31. What theorem of a previous book is in-

cluded in this proposition ?

49. What is the superior limit, as to magnitude, of the angle at the

circumference in Euc. vi. 33 ? Shew that the proof may be extended by
withdrawing the usually supposed restriction as to angular magnitude

;

and then deduce, as a corollary, the proposition respecting the magnitudes
of angles in segments greater than, equal to, or less than a semicircle.

50. The sides of a triangle inscribed in a circle are a, b, c, units respec-

tively : find by Euc. vi. c, the radius of the circumscribing circle.

51. Enunciate the converse of Euc. vi. d.

52. Shew independently that Euc. vi. d, is true when the quadri-

lateral figure is rectangular.

53. Shew that the rectangles contained by the opposite sides of a

quadrilateral figure which does not admit of having a circle described

about it, are together greater than the rectangle contained by the diagonals.

54. What different conditions may be stated as essential to the possi-

bility of the inscription and circumscription of a circle in and about a

quadrilateral figure 1

55. Point out those propositions in the Sixth Book in which Euclid's

definition of proportion is directly applied.

56. Explain briefly the advantages gained by the application of

analysis to the solution of Geometrical Problems.
57. In what cases are triangles proved to be equal in Euclid, and in

what cases are they proved to be similar ?



GEOMETRICAL EXERCISES ON BOOK VI.

PROPOSITION I. PROBLEM.

To inscribe a square in a given triangle.

Let ABC he the given triangle, of which the base ECAnalysis,

and the perpendicular AD are given.

A

Let FGHKhe the required inscribed square.

Then BUG, BDA are similar triangles,

and GUis to GB, as AD is to AB,
but GF is equal to GH

;

therefore GFis to GB, as AD is to AB.
Let BF be joined and produced to meet a line drawn from A pa-

rallel to the base BC in the point E.
Then the triangles BGF, BAE are similar,

and AE is to AB, as GFis to GB,
but GFh to GB, as AD is to ^£-B

;

wherefore AE is to ^41?, as AD is to -45;
hence AE is equal to AD.

Synthesis. Through the vertex A, draw AE parallel to BCtlie
base of the triangle,

make AE equal to AD,
join EB cutting AC m F,

through F, draw FG parallel to BC, andM parallel to AD \

also through G draw G^^Z" parallel to AD.
Then GHKF is the square required.

The different cases may be considered when the triangle is equi-

lateral, scalene, or isosceles, and when each side is taken as the base.

PROPOSITION II. THEOREM.
Iffrom the extremities of any diameter of a given circle, perpendiculars

be draion to any chord of the circle, they shall meet the chord, or the chord

produced in two points which are equidistantfrom the center.

First, let the chord CD intersect the diameter AB in L, but not

at right angles ; and from A, B, let AE, BF be drawn perpendicular
to CD. Then the points F, E are equidistant from the center of the

chord CD.
Join EB, and from J the center of the circle, draw IG perpendi«

cular to CD, and produce it to meet EB in H.
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Then IG bisects CD in G
;

(ill. 2.)

and IG, AE being both perpendicular to CD, are parallel. (\. 29.)

Therefore BIk to i?ZT, as .L4 is to HE; (VI. 2.)

and 5iJis to .FG7, as JEE is to G#;
therefore .SJis to FG, as _L4 is to GE;

but I?I is equal to Z4

;

therefore FG is equal to GE.
It is also manifest that DE is equal to CF.

When the chord does not intersect the diameter, the perpendicu-
lars intersect the chord produced.

PROPOSITION III. THEOREM.
If two diagonals of a regular pentagon be drawn to cut one another, the

greater segments will be equal to the side of the pentagon, and the diagonals

will cut one another in extreme and mean ratio.

Let the diagonals AC, BE be drawn from the extremities of the

side AB of the regular pentagon ABCDE, and intersect each other

in the point H.
Then BE and AC are cut in extreme and mean ratio in H, and

the greater segment of each is equal to the side of the pentagon.

Let the circle ABCDE be described about the pentagon, (iv. 14.)

Because EA, AB are equal to AB, BC, and they contain equal

angles

;

therefore the base EB is equal to the base A C, (i. 4.)

and the triangle EAB is equal to the triangle CBA,
and the remaining angles will be equal to the remaining angles,

each to each, to which the equal sides are opposite.

D

/7

Therefore the angle BACis equal to the angle ABE;
and the angle ARE is double of the angle BAH, (i. 32.)

but the angle EAC is also double of the angle BAC, (vi. 33.)

therefore the angle HAE is equal to AHE,
and consequently HE is equal to EA, (i. 6.) or to AB.

And because BA is equal to AE,
the angle ABE is equal to the angle AEB

;
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but the angle ABE has been proved equal to BAH'.
therefore the angle BEA is equal to the angle BAH:
and ABE is common to the two triangles ABE, ABH;

therefore the remaining angle BAE is equal to the remaining
angle AHB

;

and consequently the triangles ABE, ABH are equiangular;

therefore EB is to BA, as AB to BH: but BA is equal to EH,
therefore EB is to EH, as EH is to BH,

but BE is greater than EH; therefore EH Is greater than HB\
therefore BE has been cut in extreme and mean ratio in H

Similarly, it may be shewn, that A C has also been cut in extreme
and mean ratio in H, and that the greater segment of it CH is equal

to the side of the pentagon.

PROPOSITION IV. PROBLEM.

Divide a given arc of a circle into two parts which shall have their chord*

in a given ratio.

Analysis. Let A, B be the two given points in the circumference

of the circle, and Cthe point required to be found, such that when the

chords AC and BC are joined, the lines AC and i? CY

shall have to one
another the ratio of E to F.

Draw CD touching the circle in C;
join AB and produce it to meet CD in D.

Since the angle BACis equal to the angle BCD, (ill. 32.)

and the angle CDB is common to the two triangles DBC, DAC;
therefore the third angle CBD in one, is equal to the third angle

DCA in the other, and the triangles are similar,

therefore AD is to DC, as DCis to DB; (VI. 4.)

hence also the square on AD is to the square on D C> as AD is to

BD. (vi. 20. Cor.)

But AD is to AC, as DCis to CB, (vi. 4.)

and AD is to DC, as AC to CB, (v. 16.)

also the square on AD is to the square on DC, as the square on A C
is to the square on CB

;

but the square on AD is to the square on DC, as AD is to DB :

wherefore the square on AC is to the square on CB, as AD is to BD
but AC is to CB, as E is to F, (constr.)

therefore AD is to DB as the square on E is to the square on F.
Hence the ratio of AD to DB is given,

and AB is given in magnitude, because the points^, B in the cir-

cumference of the circle are given.
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Wherefore also the ratio ofAD to AB is given, and also the mag-
nitude of AD.

Synthesis. Join AB and produce it to D, so that AD shall be to

BD'as the square on E to the square on F.

From D draw DC to touch the circle in C, and join CB, CA.
Since AD is to DB, as the square onE is to the square on F, (constr.)

and AD is to DB, as the square on A C is to the square on BC;
therefore the square on A C is to the square on BC, as the square on

E is to the square on F,
and A

C

is to BC, as E is to F.

PROPOSITION V. PROBLEM.

A, B, C are given points. It is required to draw through any other point

in the same plane with A, B, and C, a straight line, such that the sum of its

distances from two of the given points, may be equal to its distance from the

third.

Analysis. Suppose F the point required, such that the line XFH
being drawn through any other point X, and AD, BE, CH perpen-

diculars on XFH, the sum of BE and CH is equal to AD.
A

Join AB, BC, CA, then ABC is a triangle.

Draw AG to bisect the base i?C in G, and draw GK perpendicular

to EF.
Then since BCis bisected in G,

the sum of the perpendiculars CH, BE is double of GK;
but CH and BE are equal to AD, (hyp.)

therefore AD must be double of GK;
but since AD is parallel to GK,

the triangles ADF, GKF are similar,

therefore AD is to AF, as GK is to GF;
but AD is double of GK, therefore AF is double of GF;

and consequently, GF is one-third of AG the line drawn from the

rertex of the triangle to the bisection of the base.

But AG is a line given in magnitude and position,

therefore the point F is determined.

Synthesis. Join AB, AC, BC, and bisect the base BC of the tri-

angle ABC in G; join AG and take GF equal to one-third of GA
;

the line drawn through X and F will be the line required.

It is also obvious, that while the relative position of the points A,
B, C, remains the same, the point F remains the same, wherever the
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point X may be. The point X may therefore coincide with the point

F, and when this is the case, the position of the line FX is left un-

determined. Hence the following porism.

A triangle being given in position, a point in it may be found,

such, that any straight line whatever being drawn through that point,

the perpendiculars drawn to this straight line from the two angles of

the triangle, which are on one side of it, will be together equal to the

perpendicular that is drawn to the same line from the angle on the

other side of it.

6. Triangles and parallelograms of unequal altitudes are to each

other in the ratio compounded of the ratios of their bases and altitudes.

7. If A CB, ADB be two triangles upon the same base AJB, and
between the same parallels, and if through the point in which two of

the sides (or two of the sides produced) intersect two straight lines be
drawn parallel to the other two sides so as to meet the base AJB (or

AB produced) in points E and F. Prove that AE= BF.
8. In the base AC of a triangle ABC take any point D; bisect

AD, DC, AB, BC, in F, F, G. H respectively: shew that EG is

equal to HF.
9. Construct an isosceles triangle equal to a given scalene triangle

and having an equal vertical angle with it.

10. If, in similar triangles, from any two equal angles to the

opposite sides, two straight lines be drawn making equal angles with

the homologous sides, these straight lines w7
ill have the same ratio as

the sides on which they fall, and will also divide those sides propor-

tionally.

11. Any three lines being drawn making equal angles with the

three sides of any triangle towards the same parts, and meeting one
another, will form a triangle similar to the original triangle.

12. BD, CD are perpendicular to the sides AB, AC of a triangle

ABC, and CE is drawn perpendicular to AD, meeting AB in E:
shew that the triangles ABC, ACE are similar.

13. In any triangle, if a perpendicular be let fall upon the base

from the vertical angle, the base will be to the sum of the sides, as the

difference of the sides to the. difference or sum of the segments of the

base made by the perpendicular, according as it falls within or with-

out the triangle.

14. If triangles AEF, ABC have a common angle A, triangle

AB

C

: triangle AEF r.AB.AC: AE. AF.
15. If one side of a triangle be produced, and the other shortened

by equal quantities, the line joining the points of section will be di-

vided by the base in the inverse ratio of the sides.

II.

16. Find two arithmetic means between two given straight lines.

17. .To divide a given line in harmonica! proportion.
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18. To find, by a geometrical construction, an arithmetic,

geometric, and harmonic mean between two given lines.

19. Prove geometrically, that an arithmetic mean between two
quantities, is greater than a geometric mean. Also having given the

sum of two lines, and the excess of their arithmetic above their

geometric mean, find by a construction the lines themselves..

20. If through the point of bisection of the base of a triangle anj'

line be drawn, intersecting one side of the triangle, the other produced,

and a line drawn parallel to the base from the vertex, this line shall

be cut harmonically.

21. If a given straight line AJB be divided into any two parts in

the point C, it is required to produce it, so that the whole line

produced may be harmonically divided in C and B.
22. If from a point without a circle there be drawn three straight

lines, two of which touch the circle, and the other cuts it, the line

which cuts the circle will be divided harmonically by the convex
circumference, and the chord which joins the points of contact.

III.

23. Shew geometrically that the diagonal and side of a square are

incommensurable.
24. If a straight line be divided in two given points, determine a

third point, such that its distances from the extremities, may be
proportional to its distances from the given points.

25. Determine two straight lines, such that the sum of their

squares may equal a given square, and their rectangle equal a given

rectangle.

26. Draw a straight line such that the perpendiculars let fall

from any point in it on two given lines may be in a given ratio.

27. If diverging lines cut a straight line, so that the whole is to

one extreme, as the other extreme is to the middle part, they will

intersect every other intercepted line in the same ratio.

28. It is required to cut off a part of a given line so that the part

cut off may be a mean proportional between the remainder and
another given line.

29. It is required to divide a given finite straight line into two
parts, the squares of which shall have a given ratio to each other.

IV.

30. From the vertex of a triangle to the base, to draw a straight

line which shall be an arithmetic mean between the sides containing

the vertical angle.

31. From the obtuse angle of a triangle, it is required to drav\- a

line to the base, which shall be a mean proportional between the

segments of the base. How manv answers does this question admit

of?

32. To draw a line from the vertex of a triangle to the base, which
shall be a mean proportional between the whole base and one segment.

33. If the perpendicular in a right-angled triangle divide the

hypotenuse in extreme and mean ratio, the less side is equal to the

alternate segment.
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34. From the vertex of any triangle ABC, draw a straight line

meeting the base produced in D, so that the rectangle DB. DC=AD\
35. To find a point P in the base BC of a triangle produced, so

that PD being drawn parallel to A C, and meeting A B produced to D,
AC: CP:: CP:PD.

36. If the triangle ABC has the angle at C aright angle, and
from C a perpendicular be dropped on the opposite side intersecting

it in D, then AB: DB :: AC2
: CB\

37. In any right-angled triangle, one side is to the other, as the

excess of the hypotenuse above the second, to the line cut offfrom the

first between the right angle and the line bisecting the opposite angle.

38. If on the two sides of a right-angled triangle squares be
described, the lines joining the acute angles of the triangle and the

opposite angles of the squares, will cut off equal segments from the

sides ; and each of these equal segments will be a mean proportional

between the remaining segments.

39. In any right-angled triangle ABC, (whose hypotenuse is AB)
bisect the angle A by AD meeting CB in D, and prove that

2AC* : AC2 - CD2
:: BC : CD.

40. On two given straight lines similar triangles are described.

Required to find a third, on which, if a triangle similar to them be
described, its area shall equal the difference of their areas.

41. In the triangle ABC, AC=2.BC. If CD, CD respectively

bisect the angle C, and the exterior angle formed by producing AC;
prove that the triangles CBD,ACD, ABC, CDE, have their areas as

1,2,3,4.

V.

42. It is required to bisect any triangle (1) by a line drawn parallel,

(2) by a line drawn perpendicular, to the base.

43. To divide a given triangle into two parts, having a given ratio

to one another, by a straight line drawn parallel to one of its sides.

44. Find three points in the sides of a triangle, such that, they

being joined, the triangle shall be divided into four equal triangles.

4 5. From a given point in the side of a triangle, to draw lines to

the sides which shall divide the triangle into any number of equal parts.

^6. Any two triangles being given, to draw a straight line parallel

to a side of the greater, which shall cut off a triangle equal to the less.

VI.

47. The rectangle contained by two lines is a mean proportional

between their squares.

48. Describe a rectangular parallelogram which shall be equal to

n given square, and have its sides in a given ratio.

49. If from any two points within or without a parallelogram,

r-lraight lines be drawn perpendicular to each of two adjacent sides

and intersecting each other, they form a parallelogram similar to the

former.

50. It is required to cut off from a rectangle a similar rectangle

which shall be any required part of it.
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51. If from one angle A of a parallelogram a straight line be drawn
cutting the diagonal in E and the sides in P, Q, shew that

AE l = PE.EQ.
52. The diagonals of a trapezium, two of whose sides are parallel,

cut one another m the same ratio.

VII.

53. In a given circle place a straight line parallel to a given

straight line, and having a given ratio to it; the ratio not being
greater than that of the diameter to the given line in the circle.

54. In a given circle place a straight line, cutting two radii which
are perpendicular to each other, in such a manner, that the line itself

may be trisected.

55. AB is a diameter, and P any point in the circumference of a

circle ; AP and BP are joined and produced if necessary ; if from any
point C of AB, a perpendicular be drawn to AB meeting AP and BP
in points D and E respectively, and the circumference of the circle

in a point F, shew that CD is a third proportional of CE and CF.
56. If from the extremity of a diameter of a circle tangents be

drawn, any other tangent to the circle terminated by them is so

divided at its point of contact, that the radius' of the circle is a mean
proportional between its segments.

57. From a given point without a circle, it is required to draw a

straight line to the concave circumference, which shall be divided in a

given ratio at the point where it intersects the convex circumference.

58. From what point in a circle must a tangent be drawn, so that

a perpendicular on it from a given point in the circumference may be
cut by the circle in a given ratio ?

59. Through a given point within a given circle, to draw a

straight line such that the parts of it intercepted between that point

and the circumference, may have a given ratio.

60. Let the two diameters AB, CD, of the circle ADBC be at

right angles to each other, draw any chord EF, join CE, CF, meeting
AB in GandH) prove that the triangles CGH and CEF are similar.

61. A circle, a straight line, and a point being given in position,

required a point in the line, such that a line drawn from it to the

given point may be equal to a line drawn from it touching the circle.

What must be the relation among the data, that the problem may
become porismatic, i. e. admit of innumerable solutions ?

VIII.

62. Prove that there may be two, but not more than two, similar

triangles in the same segment of a circle.

63. If as in Euclid vi. 3, the vertical angle BACof the triangle

BA C be bisected by AD, and BA be produced to meet CE drawn
parallel to AD in E; shew that AD will be a tangent to the circle

described about the triangle EAC.
64. If a triangle be inscribed in a circle, and from its vertex, lines

be drawn parallel to the tangents at the extremities of its base, they
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65. If from any point in the circumference of a circle perpen-
diculars be drawn to the sides, or sides produced, of an inscribed tri-

angle; shew that the three points of intersection will be in the same
straight line.

66. Ifthrough the middle point of any chord of a circle, two chords
be drawn, the lines joining their extremities shall intersect the first

chord at equal distances from its extremities.

67. If a straight line be divided into any two parts, to find the

locus of the point in which these parts subtend equal angles.

68. If the line bisecting the vertical angle of a triangle be divided

into parts which are to one another as the base to the sum of the sides,

the point of division is the center of the inscribed circle.

69. The rectangle contained by the sides of any triangle is to the

rectangle by the radii of the inscribed and circumscribed circles, as

twice the perimeter is to the base.

70. Shew that the locus of the vertices of all the triangles construct-

ed upon a given base, and having their sides in a given ratio, is a circle.

71. If from the extremities of the base of a triangle, perpen-
diculars be let fall on the opposite sides, and likewise straight lines

drawn to bisect the same, the intersection of the perpendiculars, that

of the bisecting lines, and the center of the circumscribing circle, will

be in the same straight line.

IX.

72. If a tangent to two circles be drawn cutting the straight line

which joins their centers, the chords are parallel which join the points

of contact, and the points where the line through the centers cuts the

circumferences.

73. If through the vertex, and the extremities of the base of a

triangle, two circles be described, intersecting one another in the base

or its continuation, their diameters are proportional to the sides of the

triangle.

74. If two circles touch each other externally and also touch a

straight line, the part of the line between the points of contact is a

mean proportional between the diameters of the circles.

75. If from the centers of each of two circles exterior to one

another, tangents be drawn to the other circles, so as to cut one another,

the rectangles of the segments are equal.

76. If a circle be inscribed in a right-angled triangle and another

be described touching the side opposite to the right angle and the

produced parts of the other sides, shew that the rectangle under the

radii is equal to the triangle, and the sum of the radii equal to the sum
of the sides which contain the right angle.

77. If a perpendicular be drawn from the right angle to the hy-

potenuse of a right-angled triangle, and circles be inscribed within the

two smaller triangles into which the given triangle is divided, their

diameters will be to each other as the sides containing the right angle.

X.

78. Describe a circle passing through two given points and touch-

ing a given circle.
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79. Describe a circle which shall pass through a given point and
touch a given straight line and a given circle.

80. Through a given point draw a circle touching two given

circles.

81. Describe a circle to touch two given right lines and such that

a tangent drawn to it from a given point, may be equal to a given line.

82. Describe a circle which shall have its center in a given line,

and shall touch a circle and a straight line given in position.

XI.

83. Given the perimeter of a right-angled triangle, it is required

to construct it, (1) If the sides are in arithmetical progression. (2) If

the sides are in geometrical progression.

84. Given the vertical angle, the perpendicular drawn from it to

the base, and the ratio of the segments of the base made by it, to

construct the triangle.

85. Apply (vi. C.) to construct a triangle ; having given the

vertical angle, the radius of the inscribed circle, and the rectangle

3ontained by the straight lines drawn from the center of the circle to

the angles at the base.

86. Describe a triangle with a given vertical angle, so that the

line which bisects the base shall be equal to a given line, and the

angle which the bisecting line makes with the base shall be equal to

a given angle.

87. Given the base, the ratio of the sides containing the vertical

angle, and the distance of the vertex from a given point in the base;
to construct the triangle.

88. Given the vertical angle and the base of a triangle, and also

a line drawn from either of the angles, cutting the opposite side in a

given ratio, to construct the triangle.

89. Upon the given base AB construct a triangle having its sides

in a given ratio and its vertex situated in the given indefinite line CD.
90. Describe an equilateral triangle equal to a given triangle.

91. Given the hypotenuse of a right-angled triangle, and the side

of an inscribed square. Required the two sides of the triangle.

92. To make a triangle, which shall be equal to a given triangle,

and have two of its sides equal to two given straight lines ; and shew
that if the rectangle contained by the two straight lines be less than
twice the given triangle, the problem is impossible.

XII.

93. Given the sides of a quadrilateral figure inscribed in a circle,

to find the ratio of its diagonals.

94. The diagonals A C, BD, of a trapezium inscribed in a circle,

cut each other at right angles in the point E
;

the rectangle AB.BC: the rectangle AD.DC :: BE : ED.
XIII.

95. In any triangle, inscribe a triangle similar to a given triangle.

96. Of the two squares which can be inscribed in a right-angled
triangle, which is the greater ?

.97. From .the. vertex of an isosceles triangle two straight lines
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drawn to the opposite angles of the square described on the base, cut

the diagonals of the square in E and F: prove that the line EF is

parallel to the base.

98. Inscribe a square in a segment of a circle.

99. Inscribe a square in a sector of a circle, so that the angular
points shall be one on each radius, and the other two in the circum-
ference.

100. Inscribe a square in a given equilateral and equiangular
pentagon.

101. Inscribe a parallelogram in a given triangle similar to a

given parallelogram.

102. If any rectangle be inscribed in a given triangle, required the

locus of the point of intersection of its diagonals.

103. Inscribe the greatest parallelogram in a given semicircle.

104. In a given rectangle inscribe another, whose sides shall beat
to each other a given ratio.

105. In a given segment of a circle to inscribe a similar segment.
1 06. The square inscribed in a circle is to the square inscribed in

the semicircle : : 5 : 2.

107. If a square be inscribed in a right-angled triangle of which
one side coincides with the hypotenuse of the triangle, the extremities

of that side divide the base into three segments that are continued
proportionals.

108. The square inscribed in a semicircle is to the square inscribed

in a quadrant of the same circle : : 8 : 5.

109. Shew that if a triangle inscribed in a circle be isosceles,

having each of its sides double the base, the squares described upon the

radius of the circle and one of the sides of the triangle, shall be to each

other in the ratio of 4 : 15.

110. APB is a quadrant, SPT a straight line touching it at

P, PM perpendicular to CA
;

prove that triangle SCT : triangle

A CB : : trkngle A CB : triangle CMP.
111. If through any point in the arc of a quadrant whose radius

is R
}
two circles be drawn touching the bounding radii ofthe quadrant,

and r, r' be the radii of these circles : shew that rr'= R*.

112. If JR. be the radius of the circle inscribed in aright-angled

triangle ABC, right-angled at A ; and a perpendicular be let fall from

A on the hypotenuse BC, and if r, r' be the radii of the circles in-

scribed in the triangles ADB, ACD : prove that

r

8 + r" = -R*.

XIV.

113. If in a given equilateral and equiangular hexagon another

be inscribed, to determine its ratio to the given one.

114. A regular hexagon inscribed in a circle is a mean propor- I

tional between an inscribed and circumscribed equilateral triangle.

115. The area of the inscribed pentagon, is to the area of the

circumscribing pentagon, as the square on the radius of the circle

inscribed within the greater pentagon, is to the square on the radius

of the circle circumscribing it.

116. The diameter of a circle is a mean proportional between the

sides of an equilateral triangle and hexagon which are described about

that circle.
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DEFINITIONS.

I.

A solid is that which hath length, breadth, and thickness,

II.

That which bounds a solid is a superficies.

III.

A straight line is perpendicular, or at right angles to a plane, when
it makes right angles with every straight line meeting it in that plane.

IV.

A plane is perpendicular to a plane, when the straight lines drawn
n one of the planes perpendicular to the common section of the two
)lanes, are perpendicular to the other plane.

V.

The inclination of a straight line to a plane, is the acute angle con-

ained by that straight line, and another drawn from the point in which
he first line meets the plane, to the point in which a perpendicular to

he plane drawn from any point of the first line above the plane, meets
he same plane.

VI.

The inclination of a plane to a plane, is the acute angle contained

>y two straight lines drawn from any the same point of their common
ection at right angles to it, one upon one plane, and the other upon
he other plane.

VII.

Two planes are said to have the same, or a like inclination to one
mother, which two other planes have, when the said angles of incli-

tation are equal to one another.

VIII.

Parallel planes are such as do not meet one another though produced,

IX.

A solid angle is that which is made by the meeting, in one point,

>f more than two plane angles, which are not in the same plane.

X.

Equal and similar solid figures are such as are contained by similar

danes equal in number and magnitude.

XL
Similar solid figures are such as have all their solid angles equal,

ach to each, and are contained by the same number of similar planes.

P
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XJI.

A pyramid is a solid figure contained by planes that are constituted

betwixt one plane and one point above it in which they meet.

XIII.

A prism is a solid figure contained by plane figures, of which two
that are opposite are equal, similar, and parallel to one another; and
the others parallelograms.

XIV.

A sphere is a solid figure described by the revolution of a semicircle

about its diameter, which remains unmoved.

XV.
The axis of a sphere is the fixed straight line about which the semi-

circle revolves.

XVI.

The center of a sphere is the same with that of the semicircle.

XVII.

The diameter of a sphere is any straight line which passes through

the center, and is terminated both ways by the superficies of the sphere,

XVIII.

A cone is a solid figure described by the revolution of a right-

angled triangle about one of the sides containing the right angle,

which side remains fixed.

If the fixed side be equal to the other side containing the right

angle, the cone is called a right-angled cone; if it be less than the

other side, an obtuse-angled ; and if greater, an acute-angled cone.

XIX.

The axis of a cone is the fixed straight line about which the

triangle revolves.

XX.
The base of a cone is the circle described by that side containing

the right angle, which revolves.

XXI.

A cylinder is a solid figure described by the revolution of a right*

angled parallelogram about one of its sides which remains fixed.

XXII.

The axis of a cylinder is the fixed straight line about which the

parallelogram revolves.

XXIII.

The bases of a cylinder are the circles described by the two revoi*

ving opposite sides of the parallelograrn 9
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XXIV.
Similar cones and cylinders are those which have their axes and

the diameters of their bases proportionals.

XXV.
A cube is a solid figure contained by six equal squares.

XXVI.
A tetrahedron is a solid figure contained by four equal and equi*

ateral triangles.

XXVII.
An octrahedron is a solid figure contained by eight equal and

equilateral triangles.

XXVIII.

A dodecahedron is a solid figure contained by twelve equal penta-

gons which are equilateral and equiangular.

XXIX.
An icosahedron is a solid figure contained by twenty equal and

iquilateral triangles.

Def. A.

A parallelopiped is a solid figure contained by six quadrilateral

igures, whereof every opposite two are parallel.

PROPOSITION I. THEOREM.

One part of a straight line cannot be in a plane, and another part above it,

If it be possible, let AB, part of the straight line ABC, be in the
dane, and the part BC above it

:

A. B a
and since the straight line AB is in the plane, it can be produced
in that plane

:

let it be produced to D
;

and let any plane pass through the straight line AD, and be turned
about it, until it pass through the point C:

and because the points B, Care in this plane,

the straight line BC is in it: (I. def. 7.)

herefore there are two straight lines ABC, ABB in the same plaq$

that have a common segment AB\ (I. 11. Cor.)

which is impossible.

Therefore
3
one part, &c. Q.E,E>9

f2
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PROPOSITION II. THEOREM.

Two straight lines which cut one another are in one plane, and three

straight lines which meet one another are in one plane.

Let two straight lines AB, CD cut one another in JE;

then AB, CD shall be in one plane :

end three straight lines EC, CB, BE, which meet one another,

shall be in one plane.

A\ /d

Let any plane pass through the straight line EB,
and let the plane be turned about EB, produced if necessary, until it

pass through the point C.

Then, because the points E, Care in this plane,

the straight line EC is in it: (I. def. 7.)

for the same reason, the straight line BCis in the same:
and by the hypothesis, EB is in it

:

therefore the three straight lines EC, CB, BE are in one plane;

but in the plane in which EC, EB are,

in the same are CD, AB : (XI. 1.)

therefore, AB, CD are in one plane.

Wherefore two straight lines, &c. Q.E.D.

PROPOSITION III. THEOREM.

If two planes cut one another, their common section is a straight line.

Let two planes AB, BC cut one another, and let the line DB be

their common section.

Then DB shall be a straight line.

If it be not, from the point D to B, draw, in the plane AB, the

straight line DEB, (post. 1.)

and in the plane BC, the straight line DFB :

then two straight lines DEB, DFB have the same extremities,

and therefore include a space betwixt them

;

which is impossible: (I. ax. 10.)

therefore BD, the common section of the planes AB, BC, cannot

but be a straight line.

Wherefore, if two planes, &c. q.e.d.
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PROPOSITION IV. THEOREM.
If a straight line stand at right angles to each of two straight lines in

'he point of their intersection, it shall also be at right angles to the plane

vhich passes through them, that is, to the plane in which they are.

Let the straight line EF stand at right angles to each of the straight

lines AB, CD, in E the point of their intersection.

Then EF shall also be at right angles to the plane passing through
AB, CD.

F

rake the straight lines AF, FB, CF, ED all equal to one another;

and through F draw, in the plane in which are AB, CD, any
straight line GEH, and join AD, CB;

then from any point F, in EF, draw FA, FG, FD, FC, FH, FB.
And because the two straight lines AE, ED are equal to the two

BE, EC, each to each,

and that they contain equal angles AED, BEC, (I. 15.)

the base AD is equal to the base BC, (I. 4.)

and the angle DAE to the angle EBC:
and the angle AEG is equal to the angle BEIT: (I. 15.)

;herefore the triangles AEG, BEHh&xe two angles of the one equal

to two angles of the other, each to each, and the sides AE, EB,
adjacent to the equal angles, equal to one another

:

wherefore they have their other sides equal : (I. 26.)

therefore GE is equal to EH, and AG to BH:
and because AE is equal to EB, and FE common and at right

angles to them,
the base AF is equal to the base FB

;
(i. 4.)

for the same reason, CF is equal to FD

:

and because AD is equal to BC, and AFxo FB,
he two sides FA, AD are equal to the two FB, BC, each to each;

and the base DF was proved equal to the base FC;
therefore the angle FAD is equal to the angle FBC: (I. 8.)

»s:ain, it was proved that GA is equal to BH, and also AF'to FB;
therefore FA and AG are equal to FB and BIT, each to each

;

and the angle FAG has been proved equal to the angle FBH;
therefore the base GF is equal to the base FH: (i. 4.)

gain, because it was proved that Crisis equal to EH, andEFis common;
therefore GE, EF are equal to HE, EF, each to each

;

and the base GF is equal to the base FH;
therefore the angle GEF is equal to the angle HEF; (I. 8.)

and consequently each of these angles is a right angle. (I. def. 10.)

Therefore FE makes right angles with GH, that is, with any straight

ine drawn through E in the plane passing through A 71, CD.
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In like manner, it may be proved, that FE makes right angles with
every straight line which meets it in that plane.

But a straight line is at right angles to a plane when it makes right
angles with every straight line which meets it in that plane : (xi. def. 3.)
therefore EFh at right angles to the plane in which are AB, CD.

Wherefore, if a straight line, &c. q.e.d.

PROPOSITION V. THEOREM.

If three straight lines meet all in one point, and a straight line stands
at right angles to each of them in that point ; these three straight lines are
in one and the same plane.

Let the straight line AB stand at right angles to each of the

straight lines BC, BI), BE, in B the point where they meet.
Then BC, BD, BE shall be in one and the same plane.

If no I, let, if it be possible, BD and BE be in one plane,

and BCbe above it;

and let a plane pass through AB, B C, the common section of which,

with the plane in which BD and BE are, is a straight line
;
(XI. 3.)

let this be BF:
therefore the three straight lines AB, BC, BF are all in one plane,

viz. that which passes through AB, BC.
And because AB stands at right angles to each of the straight lines

BD, BE,
it is also at right angles to the plane passing through them : (xr. 4.)

and therefore makes right angles with every straight line meeting it

in that plane : (xi. def. 3.)

but BF, which is in that plane, meets it
;

therefore the angle ABF is a right angle :

but the angle ABC, by the hypothesis, is also a right angle
;

therefore the angle ABF is equal to the angle ABC,
and they are both in the same plane, which is impossible; (I. ax. 9.)

therefore the straight line BCis not above the plane in which are

BD and BE:
wherefore the three straight lines BC, BD, BE are in one ami the

same plane.

Therefore, if three straight lines, &c. q.e.d.

PROPOSITION VI. THEOREM.

If ttoo straight lines bs at right angles to the same plane, they shall be

parallel to one another.

Let the straight lines AB, CD be at light angles to the same plane.
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Then AB shall be parallel to CD.

AtK 10

Let them meet the plane in the points B, D,
and draw the straight line BD, to which draw DE at right angles, in

the same plane; (I. 11.)

and make DE equal to AB, (I. 3.) and join BE, AE, AD.
Then, because AB is perpendicular to the plane,

it makes right angles with every straight line which meets it, and
is in that plane : (XI. def. 3.)

but BD, BE, which are in that plane, do each of them meet AB
;

therefore each of the angles ABD, ABE is a right angle

;

for the same reason, each of the angh-s CDB, CDE is a right angle:

and because AB is equal to DE, and BD common,
the two sides AB, BD are equal to the two ED, DB, each to each

;

and they contain right angles

:

therefore the base AD is equal to the base BE: (i. 4.)

again, because AB is equal to DE, and BE to AD;
AB, BE are equal to ED, DA, each to each;

and, in the triangles ABE, EDA, the base AE is common

:

therefore the angle ABE is equal to the angle EDA : (I. 8.)

but ABE is a right angle

;

therefore EDA is also a right angle, and ED perpendicular to DA :

but it is also perpendicular to each of the two BD, DC;
wherefore ED is at right angles to each of the three straight lines

BD, DA, DC in the point in which they meet:
therefore these three straight lines are all in the same plane: (XI. 5.)

but AB is in the plane in which are BD, DA, (XT. 2.)

because any three straight lines which meet one another are in one plane;

therefore AB, BD, DC are in one plane:

and each of the angles ABD, BDC is a right angle;

therefore AB is parallel to CD. (I. 28.)

Wherefore, if two straight lines, &c. Q.E.D.

PROPOSITION VII. THEOREM.

If two straight lines be parallel, the straight line drawn from any point

in the one to any point in the other, is in the same 'plane with the parallels.

Let AB, CD be parallel straight lines, and take any point E in the

one, and the point F in the other.

Then the straight line which joins I? and F shall be in the same
plane with the parallels.

If not, let it be, if possible, above the plane, as EGF;
and in the plane AB CD in which the parallels are

?
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draw the straight line EHF from E to F,

A E B

And since EGF also is a straight line, the two straight lines EHF,
EGF include a space between them, which is impossible. (I. ax. 10.)

Therefore the straight line joining the points E, F is not above the
plane in which the parallels AB, CD are, and is therefore in that plane.

Wherefore, if two straight lines, &c. Q.E.D.

PROPOSITION VIII. THEOREM.

If two straight lines be parallel, and one of them be at right angles to a
plane ; the other also shall be at right angles to the same plane.

Let AB, CD be two parallel straight lines, and let one of them AB
be at right angles to a plane.

Then the other CD shall be at right angles to the same plane.

c

If

Let AB, CD meet the plane in the points B, D, and join BD\
therefore AB, CD, BD are in one plane, (xi. 7.)

In the plane to which AB is at right angles,

draw DE at right angles to BD, (i. 11.)

and make DE equal to AB, (I. 3.) and join BE, AE, AD.
And because AB is perpendicular to the plane,

it is perpendicular to every straight line which meets it, and is in

that plane
;
(XI. def. 3.)

therefore each of the angles ABD, ABE is a right angle

:

and because the straight line BD meets the parallel straight lines

AB, CD,
the angles ABD, CDB are together equal to two right angles : (I. 29.)

and ABD is a right angle;

therefore also CDB is a right angle, and CD perpendicular to BD

:

and because AB is equal to DE, and BD common,
the two AB, BD are equal to the two ED, DB, each to each

;

and the angle ABD is equal to the angle EDB,
because each of them is a right angle;

therefore the base AD is equal to the base BE: (I. 4.)

again, because AB is equal to DE, and BE to AD,
the two AB, BE are equal to the two ED, DA, each to each

j

and the base AE is common to the triangles ABE, EDA

;
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wherefore the angle ABE is equal to the angle EDA : (I, 8.)

but ABE is a right angle

:

and therefore EDA is a right angle, and ED perpendicular to DA :

but it is also perpendicular to ED
;
(constr.)

therefore ED is perpendicular to the plane which passes through

ED, DA
;
(xi. 4.)

and therefore makes right angles with every straight line meeting it

in that plane : (xi. def. 3.)

but DC is in the plane passing through ED, DA,
because all three are in the plane in which are the parallels AB, CD;

wherefore ED is at right angles to DC;
and therefore CD is at right angles to DE:

but CD is also at right angles to DB;
therefore CD is at right angles to the two straight lines DE, DB in

the point of their intersection D
;

and therefore is at right angles to the plane passing through DE,
DB, (xi. 4.)

which is the same plane to which AB is at right angles.

Therefore, if two straight lines, &c. Q. e. d.

PROPOSITION IX. THEOREM.
Two straight lines which are each of them parallel to the same straight

line, and not in the same plane with it, are parallel to one another.

Let AB, CD be each of them parallel to EF, and not in the same
plane with it.

Then AB shall be parallel to CD.
A II B

C K D

In EF take any point G, from which draw, in the plane passin

through EF, AB, the straight line GHat right angles to EF; (i. 11.

and in the plane passing through EF, CD, draw GK at right angles

to the same EF.
And because EF is perpendicular both to GH and GK,

EF is perpendicular to the plane HGK passing through them : (xi. 4.)

and EF is parallel to AB
;

therefore AB is at right angles to the plane HGK. (xi. 8.)

For the same reason, CD is likewise at right angles to the plane HGK.
Therefore AB, CD are each of them at right angles to the plane HGK.

But if two straight lines are at right angles to the same plane, they
are parallel to one another : (XI. 6.) therefore AB is parallel to CD.

Wherefore, two straight lines, &c. Q.E.D.

PROPOSITION X. THEOREM.
If two straight lines meeting one another be parallel to two others that

meet one another, and are not in the same plane with the first two ; the first

two and the other two shall contain equal angles.

r5
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Let the two straight lines AB, BC, which meet one another, he
parallel to the two straight lines DE, EF, that meet one another, and
are not in the same plane with AB, BC.

The angle ABC shall be equal to the angle DEF.
B

Take BA, BC, ED, EF all equal to one another;
and join AD, CF, BE, A C, DF.

Then, because BA is equal and parallel to ED,
therefore AD is both equal and parallel to BE. (I. 33.)

For the same reason, CFis equal and parallel to BE.
Therefore AD and CF are each of them equal and parallel to BE.
But straight lines that are parallel to the same straight line, and not

in the same plane with it, are parallel to one another: (XI. 9.)

therefore AD is parallel to CF; and it is equal to it: (I. ax. 1.)

and AC, .Disjoin them towards the same parts
;

and therefore ACh equal and parallel to DF. (T. 33.)

And because AB, BC are equal to DE, EF, each to each,

and the base AC to the base DF

:

the angle ABCh equal to the angle DEF. (i. 8.)

Therefore, if two straight lines, &c. Q.E.D.

PROPOSITION XI. PROBLEM.

To draw a straight line pcrpendicidar to a plane, from a given poini

above it.

Let A be the given point above the plane BH.
It is required to draw from the point A a straight line perpendicular

to the plane BH.
In the plane draw any straight line BC,

and from the point A draw AD perpendicular to BC. (I. 12.)

If then AD be also perpendicular to the plane BH, the thing re-

quired is already done

;

but if it be not, from the point D draw, in the plane BH, the straight

lino DE at right angles to BC; (I. 11.)

and from the point A draw AF perpendicular to DE.
Then AF shall be perpendicular to the plane BH.

\
\A »
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Through F draw GH parallel to BC. (1.31.)

And because BC in at right angles to ED and DA,
BCh at right angles to the plane passing through JED, DA : (XI. 4.)

and GH is parallel to BC:
but, if two straight lines be parallel, one of which is at right angles

to a plane,

the other is at right angles to the same plane
;
(XI. 8.)

wherefore GH is at right angles to the plane through JED, DA
;

and is perpendicular to every straight line meeting it in that plane .

(XI. def. 3.)
m

but AF, which is in the plane through ED, DA, meets its

therefore GH is perpendicular to AF;
and consequently AF is perpendicular to GH;

and AF is perpendicular to DE;
therefore AF is perpendicular to each of the straight lines GH, DE.

But if a straight line stand at right angles to each of two straight

lines in the point of their intersection, it is also at right angles to the

plane passing through them : (xi. 4.)

but the plane passing through ED, GH is the plane BH',
therefore AF is perpendicular to the plane BH:

therefore, from the given point A, above the plane BH, the straight

line AFk drawn perpendicular to that plane. Q.E.F.

PROPOSITION XII. PROBLEM.

To erect a straight line at right angles to a given plane, from a point

given in the plane.

Let A be the point given in the plane.

It is required to erect a straight line from the point A at right angles
to the plane,

D B

CG7
From any pointB above the plane draw BC perpendicular to it; (xi. 11.)

and from A draw AD parallel to BC. (I. 31.)

Because, therefore, AD, CB are two parallel straight lines,

and one of them BC is at right angles to the given plane,

the other AD is also at right angles to it : (xi. 8.)

therefore a straight line has been erected at right angles to a given
plane, from a point given in it. Q.E.F.

PROPOSITION XIII. THEOREM.

From the same point in a given plane, there cannot be two straight lines

at right angles to the plane, upon the same side of it : and there can be but

vne perpendicular to a planefrom a point above, the plane.

For, if it be^sifelgfJet4he two straightMneaAByA C be at right
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angles to a given plane from the same point A in the plane, and upon
the same side of it.

Let a plane pass through BA, AC;
the common section of this with the given plane is a straight line

passing through A : (xi. 3.)

let DAE be their common section :

therefore the straight lines AB, A C, DAE are in one plane

:

and because CA is at right angles to the given plane,

it makes right angles with every straight line meeting it in that

plane : (xi. def. 3.) but DAE, which is in that plane, meets CA
;

therefore CAE is a right angle.

For the same reason, BAE is a right angle.

Wherefore the angle CAE is equal to the angle BAE; (ax. 11.)

and they are in one plane, which is impossible.

Also, from a point above a plane, there can be but one perpendicular

to that plane

:

for, if there could be two, they would be parallel to one another,

which is absurd, (xi. 6.)

Therefore, from the same point, &c. q.e.d.

PROPOSITION XIV. THEOREM.

Planes to which the sarnie straight line is perpendicular, are parallel to

one another.

Let the straight line AB be perpendicular to each of the planes

CD, EF.
These planes shall be parallel to one another.

B̂ P

Tf not, they shall meet one another when produced :

let them meet : their common section is a straight line GH, in

which take any point K, and join AK, BK.
Then, because AB is perpendicular to the plane EF,

it is perpendicular to the straight line BK which is in that plane:

(xi. def. 3.)

therefore ABK is a right angle.

Tor the same reason BAK is a right angle

:
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wherefore the two angles ABK, BAK, of the triangle, ABK, are

equal to two right angles, which is impossible : (i. 17.)

therefore the planes CD, EF, though produced, do not meet one

another

;

that is, they are parallel, (xi. def. 8.)

Therefore, planes, &c. q.e.d.

PROPOSITION XV. THEOREM.

If two straight lines meeting one another be parallel to two other straight

lines which meet one another, but are not in the same plane with the first

two; the plane which passes through these is parallel to the plane passing

through the others.

Let AB, BC, two straight lines meeting one another, be parallel to

BE, EF, two other straight lines that meet one another, but are not

in the same plane with AB, BC.
The planes through AB, BC, and BE, EF shall not meet, though

produced.

From the point B draw BG perpendicular to the plane which
passes through BE, EF, (xi. 11.) and let it meet that plane in G :

and through 6? draw GLH'parallel to ED, and GK parallel to EF. (i. 31.)

And because BG is perpendicular to the plane through BE, EF,
it makes right angles with every straight line meeting it in that

plane : (xi. def. 3.)

but the straight lines GH, GK in that plane meet it

;

therefore each of the angles BGH, BGK is a right angle

;

and because BA is parallel to GH (for each of them is parallel to

DE, and they are not both in the same plane with it), (xi. 9.)

the angles GBA, BGH are together equal to two right angles ; (i. 29.)

and BGH is a right angle;

therefore also GBA is a right angle, and GB perpendicular to BA.
Por the same reason, GB is perpendicular to BC.

Since therefore the straight line GB stands at right angles to the

two straight lines BA, BCiimt cut one another in B;
GB is perpendicular to the plane through BA, BC: (xi. 4.)

and it is perpendicular to the plane through DE, EF
; (constr.)

therefore BG is perpendicular to each of the planes through AB,
BC,s.ndiDE,EF:

but planes to which the same straight line is perpendicular, ara

parallel to one another; (xi. 14.)

therefore the plane through AB, BC is parallel to the plane througi
DE, EF. Wherefore, if two straight lines, &c. q.d.d.
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PROPOSITION XVI. THEOREM.

If two parallel planes be cut by another plane, their common sections with

it are parallels.

Let the parallel planes AB, CD be cut by the plane EFHG, and
let their common sections with it be EF, GH.

Then EF shall be parallel to GH.
K

n
AM

r/ n\h

E^i G

For if it is not, EF, GH shall meet, if produced, either on the side

of FH, or EG.
First, let them be produced on the side of FH, and meet in the point K.

Therefore, since EFK is in the plane AB,
every point in EFK is in that plane : (XI. 1.)

and K is a point in EFK;
therefore K is in the plane AB

:

for the same reason, K is also in the plane CD

:

wherefore the planes AB, CD produced, meet one another :

but they do not meet, since they are parallel by the hypothesis
;

therefore the straight lines EF, GH do not meet when produced
on the side ofFH.

In the same manner it may be proved, that EF, GH do not meet
when produced on the side of EG.

But straight lines which are in the same plane, and do not meet,

though produced either way, are parallel

;

therefore EF is parallel to GH.
Wherefore, if two parallel planes, &c. Q.E.D.

PROPOSITION XVII. THEOREM.

If two straight lines be cut by parallel planes, they shall be cut in the

same ratio.

Let the straight lines AB, CD be cut by the parallel planes GH,
KL, MN, in the points A,E,B>, C, F, D.

As AE is to EB, so shall OF be to FD.
K

Join AC, BD, AD. and let AD meet the plane KL in ^he., point

; and join EX, XF,
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Because the two parallel planes KL,MN are cut by the plane EBDX,
the common sections EX, BD are parallel: (XI. 16.)

for the same reason, because the two parallel planes GH, J[L are

cut by the plane AXFC,
the common sections AC, XF are parallel

:

and because EX is parallel to BD, a side of the triangle ABB

;

as AE to EB, so is AX to XD : (vi. 2.)

again, because XFis parallel to AC, a side ofthe triangle ADC:
as AX to XD, so_ is CF to FD :

and it was proved that AX is to XD, as AE to EB

;

therefore, as AE to EB, so is CF to FD. (v. 11.)

Wherefore, if two straight lines, &c. Q.E.D.

PROPOSITION XVIII. THEOREM.

If a straight line be at right angles to a plane, every plane which passes

through it shall be at right angles to that plane.

Let the straight line AB be at right angles to the plane CK.
Every plane which passes through AB shall be at right angles to

the plane CK.
D G A H
r

c F B E

Let any plane DE pass through AB,
and let CEbe the common section of the planes DE, CK;

take any point F in CE from which draw FG in the plane DE
at right angles to CE. (r. 11.)

And because AB is perpendicular to the plane CK,
therefore it is also perpendicular to every straight line in that plane
meeting it

; (XI. def. 3.)

and consequently it is perpendicular to CE:
wherefore ABF is a right angle :

but GFB is likewise a right angle; (constr.)

therefore AB is parallel to FG: (I. 28.)

and AB is at right angles to the plane CK

;

therefore FG is also at right angles to the same plane. (XI. 8.)

But one plane is at right angles to another plane when the straight

lines drawn in one of the planes, at right angles to their common sec-

tion, are also at right angles to the other plane
;
(XL def. 4.)

and any straight line FG in the plane DE, which is at right angles to

CE, the common section of the planes, has been proved to be per-

pendicular to the other plane CK;
therefore the plane DE is at right angles to the plane CK.

In like manner, it may be proved that all planes which pass through
AB are at right angles to the plane CK.

Therefore, if a straight line, &c. Q.E.D.
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PROPOSITION XIX. THEOREM.

If two planes which cut one another be each of them perpendicular to a

third plane ; their common section shall be perpendicular to the same plane.

Let the two planes AB, BChe each of them perpendicular to a

third plane, and let BD be the common section of the first two.

Then BD shall be perpendicular to the third plane.

B

If it be not, from the point D draw, in the plane AB, the straight

line DE at rignt angles to AD the common section of the plane AB
with the third plane; (I. 11.)

and in the plane BC draw DF at right angles to CD the common
section of the plane BC with the third plane.

And because the plane AB is perpendicular to the third plane, and
DE is drawn in the plane AB at right angles to AD, their common
section,

DE is perpendicular to the third plane. (XI. def. 4.)

In the same manner, it may be proved, that DF is perpendicular

to the third plane.

Wherefore, from the point D two straight lines stand at right angles

tc the third plane, upon the same side of it, which is impossible : (XI. 13.)

therefore, from the point D there cannot be any straight line at

right angles to the third plane, except BD the common section of the

planes AB, BC:
therefore BD is perpendicular to the third plane.

Wherefore, if two planes, &c. Q.E.D.

PROPOSITION XX. THEOREM.

If a solid angle be contained by three plane angles, any two of them are

greater than the third.

Let the solid angle at A be contained by the three plane angles

BAC, CAD, DAB.
Any two of them shall be greater than the third.

D

If the angles BAC, CAD, DAB be all equal,

it is evident, that any two of them are greater than the third-
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But if they are not, let BAC be that angle which is not less ihan

either of the other two, and is greater than one of them DAB;
and at the point A in the straight line AB, in the plane which

passes through BA, AC, make the angle BAE equal to the angle

DAB; (I. 23.) and make AE equal to AD, and through E draw
BEC cutting AB, A C in the points B, C, and join DB, DC.

And because DA is equal to AE, and BA is common,
the two DA, AB are equal to the two EA, AB each to eachj

and the angle DAB is equal to the angle EAB

:

therefore the base DB is equal to the base BE: (i. 4.)

and because BD, DC are greater than CB, (I. 20.)

and one of them BD has been proved equal to BE a part of CB,
therefore the other DCis greater than the remaining part EC: (I. ax. 5.)

and because DA is equal to AE, and A C common,
but the base DC greater than the base EC;

therefore the angle DA C is greater than the angle EA C; (I. 25.)

and, by the construction, the angle DAB is equal to the angle BAE;
wherefore the angles DAB, DAC are together greater than BAE,

EAC, that is, than the angle BAC: (I. ax. 4.)

but BAC is not less than either of the angles DAB, DAC:
therefore BA C, with either of them, is greater than the other.

Wherefore, if a solid angle, &c. q.e.d.

PROPOSITION XXI. THEOREM.

Every solid angle is contained by plane angles, which together are less than

few right angles.

First, let the solid angle at A be contained by three plane angles
BAC, CAD, DAB.

These three together shall be less than four right angles.

Take in each of the straight lines AB, A 0, AD. any points B, C, D,
andjoin.ee; CD, DB.

Then, because the solid angle at B is contained by the three plane
angles CBA,ABD,DBC,

any two of them are greater than the third
;

(xi. 20.)

therefore the angles CBA,ABD are greater than the angle DBC:
for the same reason, the angles BCA, A CD are greater than the
angle DCB;

and the angles CDA, ADB, greater than BDC:
wherefore the six angles CBA, ABD, BCA,ACD, CDA, ADB,

are greater than the three angles DBC, BCD, CDB :

but the three angles DBC, BCD, CDB are equal to two right
angles; (1.32.)
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therefore the six angles CBA, ABB, BCA, A CD, CDA, ADS
are greater than two right angles

:

and because the three angles of each of the triangles ABC, A CD,
ADB are equal to two right angles,

therefore the nine angles of these three triangles, viz. the angles;

CBA, BAC, ACB, ACT), CBA, BAG, ABB, BBA, BAB are

equal to six right angles

;

of these the six angles CBA, ACB, ACB, CBA, ABB, BBA
are greater than two right angles

;

therefore the remaining three angles BAC, CAB, BAB, which
contain the solid angle at A, are less than four right angles.

Next, let the solid angle at A be contained by any number of plane
angles BAC, CAB, BAB, EAF, FAB.

These shall together be less than four right angles.

Let the planes in which the angles are, be cut by a plane,

and let the common sections of it with those planes be BC, CB,
BE, EF, FB.

And because the solid angle at B is contained by three plane angles

CBA, ABF, FBC, ofwhich any two are greater than the third, (xi. 20.)

the angles CBA, ABF, are greater than the angle FBC:
for the same reason, the two plane angles at each of the points C, B,
E, F, viz. those angles which are at the bases of the triangles, having
the common vertex A are greater than the third angle at the same
point, which is one of the angles of the polygon BCBEF:

therefore all the angles at the bases of the triangles are together

greater than all the angles of the polygon :

and because all the angles of the triangles are together equal to

twice as many right angles as there are triangles
;

(I. 32.)

that is, as there are sides in the polygon BCBEF;
and that all the angles of the polygon, together with four right

angles, are likewise equal to twice as many right angles as there are

sides in the polygon: (I. 32. Cor. 1.)

therefore all the angles of the triangles are equal to all the angles

of the polygon together with four right angles : (I. ax.l.)

but all the angles at the bases of the triangles are greater than all

the angles of the polygon, as has been proved;
wherefore the remaining angles of the triangles, viz. those of the

vertex, which containthe solid angle at A, are less thanfour right angles.

Therefore, every solid angle, &c. q.e.d.



NOTES TO BOOK XL

The solids considered in the eleventh and twelfth books are Geome-
trical solids, portions of space bounded by surfaces which are supposed
capable of penetrating and intersecting one another.

In the first six books, all the diagrams employed in the demonstra-
tions, are supposed to be in the same plane which may lie in any position

whatever, and be extended in every direction, and there is no difficulty

in representing them roughly on any plane surface ; this, however, is not
the case with the diagrams employed in the demonstrations in the eleventh

and twelfth books, which cannot be so intelligibly represented on a plane
surface on account of the perspective. A more exact conception may be
attained, by adjusting pieces of paper to represent the different planes,

and drawing lines upon them as the constructions may require, and by
fixing pins to represent the lines which are perpendicular to, or inclined

to any planes.

Any plane may be conceived to move round any fixed point in that

plane, either in its own plane, or in any direction whatever ; and if there

be two fixed points in the plane, the plane cannot move in its own plane,

but may move round the straight line which passes through the two fixed

points in the plane, and may assume every possible position ofthe planes

which pass through that line, and every different position of the plane
will represent a different plane ; thus, an indefinite number of planes

may be conceived to pass through a straight line which will be the com-
mon intersection of all the planes. Hence, it is manifest, that though two
points fix the position of a straight line in a plane, neither do two points

nor a straight line fix the position of a plane in space. If, however, three

points, not in the same straight line, be conceived to be fixed in the plane,

it will be manifest, that the plane cannot be moved round, either in its

own plane or in any other direction, and therefore is fixed.

Also, any conditions which involve the consideration of three fixed

points not in the same straight line, will fix the position of a plane in

space ; as also two straight lines which meet or intersect one another, or

two parallel straight lines in the plane.

Def. v. "When a straight line meets a plane, it is inclined at different

angles to the different lines in that plane which may meet it ; and it is

manifest that the inclination of the line to the plane is not determined by
its meeting any line in that plane. The inclination of the line to the
plane can only be determined by its inclination to some fixed line in the
plane. If a point be taken in the line different from that point where the
line meets the plane, and a perpendicular be drawn to meet the plane in

another point ; then these two points in the plane will fix the position of

the line which passes through them in that plane, and the angle contained
by this line and the given line, will measure the inclination of the line to

the plane ; and it will be found to be the least angle which can be formed
with the given line and any other straight line in the plane.

If two perpendiculars be drawn upon a plane from the extremities of a
straight line which is inclined to that plane, the straight line in the plane
intercepted between the perpendiculars is called the projection of the line

on that plane ; and it is obvious that the inclination of a straight line to



NOTES TO BOOK XI.

a plane is equal to the inclination of the straight line to its projection on
the plane. If, however, the line be parallel to the plane, the projection
of the line is of the same length as the line itself; in all other cases the
projection of the line is less than the line, being the base of a right-angled
triangle, the hypotenuse of which is the line itself.

The inclination of two lines to each other, which do not meet, is

measured by the angle contained by two lines drawn through the same
point and parallel to the two given lines.

Def. vi. Planes are distinguished from one another by their inclina«

tions, and the inclinations of two planes to one another will be found to

be measured by the acute angle formed by two straight lines drawn in

the planes, and perpendicular to the straight line which is the common
intersection of the two planes.

It is also obvious that the inclination of one plane to another will be
measured by the angle contained between two straight lines drawn from
the same point, and perpendicular, one on each of the two planes.

The intersection of two planes suggests a new conception of the
straight line.

Def. IX. StejOegc ycovia IcttXv tJ viro irXnovtuv r\ 8vo ywviwv liri'irL&wv

t7ripL£X°lJL ^v '

>h M'/ ovcrtSv iv tim avTco iiriiriSta Trpos ivl cnyisiw (rvvivrafxivcav.

The rendering of this definition by Simson may be slightly amended.
The word irEpiExo/nh-n is rather comprehended or contained than made

:

and trvvtBTafkivtov meansjoined and fitted together, not meeting. " A solid

angle is that which is contained by more than two plane anglesjoined to-

gether at one pointj (but) which are not in the same plane."
When a solid angle is contained by three plane angles, each plane

which contains one plane angle, is fixed by the position of the other two,

and consequently, only one solid angle can be formed by three plane

angles. But when a solid angle is formed by more than three plane

angles, if one of the planes be considered fixed in position, there are no
conditions which fix the position of the rest of the planes which contain

the solid angle, and hence, an indefinite number of solid angles, unequal to

one another, may be formed by the same plane angles, when the number
of plane angles rs more than three.

Def. A. Parallelopipeds are solid figures in some respects analogous

to parallelograms, and remarks might be made on parallelopipeds similar

to those which were made on rectangular parallelograms in the notes to

Book 11., p. 99 ; and every right-angled parallelopiped may be said to be

contained by any three of the straight lines which contain the three right

angles by which any one of the solid angles of the figure is formed ; or

more briefly, by the three adjacent edges of the parallelopiped.

As all lines are measured by lines, and all surfaces by surfaces, so al!

solids are measured by solids. The cube is the figure assumed as the

measure of solids or volumes, and the unit of volume is that cube, th«

edge of which is one unit in length.

If the edges of a rectangular parallelopiped can be divided into units

of the same length, a numerical expression for the number of cubic units

in the parallelopiped may be found, by a process similar to that by

which a numerical expression for the area of a rectangle was found.

Let AB, AC, AD be the adjacent edges of a rectangular parallelopiped

AG, and let AB contain 5 units, AC, 4 units, and AD, 3 units in length.

Then if through the points of division of AB, A C, AD, planes be drawl.

parallel to the faces BG, BD, AE respectively, the parallelopiped will be

divided into cubic units, all equal to one another.
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And since the rectangle ABEC contains 5x4 square units, (Book n,

note, p. 100) and that for every linear unit in AD there is a layer of 5 x 4

cubic units corresponding to it

;

consequently, there are 5 x 4 x 3 cubic units in the whole parallele-

piped AG.
That is, the product of the three numbers which express the number

of linear units in the three edges, will give the number of cubic units m
the parallelopiped, and therefore will be the arithmetical representation

of its volume.
And generally, if AB, AC, AD; instead of 5, 4 and 3, consisted of a, 6,

and c linear units, it may be shewn, in a similar manner, that the volume

of the parallelopiped would contain abc cubic units, and the product abc

would be a proper representation of the volume of the parallelopiped.

If the three sides 'of the figure were equal to one another, or b and a

each equal to a, the figure would become a cube, and its volume would be

represented by a a a, or a3
.

t

It may easily be shewn algebraically that the volumes of similar rect-

angular parallelopipeds are proportional to the cubes of their homolo-

gous edges.

Let the adjacent edges of two similar parallelopipeds contain a, b, c,

and a', b', c
7
, units respectively. Also let V, V, denote their volumes.

Then V= abc, and V = a'b'd.

a b c
.

But since the parallelopipeds are similar, therefore—

Hence
abc

a'b'c'

abc
a'

'
b'

'
c'

a a a

a'
'
a" a'

In a similar manner, it may be shewn that the volumes of all similar

solid figures bounded by planes, are proportional to the cubes of their

homologous edges.
Prop. vi. From the diagram, the following important construction may

be made. Iffrom B a perpendicular BFbe drawn to the opposite side DE of

the triangle DBE, and AF be joined; then AF shall be perpendicular
to DE, and the angle AFB measures the inclination of the planes AED
and BED.

Prop. xix. It is also obvious, that if three planes intersect one
another ; and if the first be perpendicular to the second, and the second
be perpendicular to the third ; the first shall be perpendicular to the third ;

also the intersections of every two shall be perpendicular to one another,
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1

.

What is meant by a solid in geometry ? What are the boundaries
of solids ? How many dimensions has a solid ?

2. Explain the distinction between a plane surface and a curved
surface.

3. What is assumed in speaking of a plane ? Three points are requi-
site to fix the position of a plane, Is there any exception to this

proposition ?

4. Shew that every two points are in the same straight line, and every
three are in the same plane.

5. How is the inclination of a straight line to a plane measured ?

6. How many straight lines can be drawn making a given angle,

(1) with a straight line, (2) with a plane. Shew that if the given-
angle be aright angle, there is only one such straight line.

7. WliaTis meant by the projection of a straight line on a plane ?

8. State what is to be considered the inclination to each other of

two straight lines in space,, which do not meet when produced.
9. Define the inclination of a plane to a plane, and shew that it is the

same at all points of their intersection.

10. Two planes are parallel to each other when they are equidistant,

or when all the perpendiculars that can be drawn between them are equal.

11. When is a straight line perpendicular to a plane? Shew that it

is so when it is perpendicular to two lines in that plane.

<f 12. How must one plane meet another, so that the inclination of the
planes may be equal to a given angle ?

13. Three straight lines which meet in a point, and are perpendicular
to a fourth straight line, are in the same plane. If they meet, but not in

one point, are they in the same plane ?

14. If a plane be defined as the surface generated by the revolution

of a straight line, which is always perpendicular to a given straight line,

and passes through a given point in it ; shew that the straight line

joining any two points in a plane will be wholly in that plane.

P 15. Can any reason be assigned, why the same order has not been fol-

lowed in Euc. xi, 8, 9, as in Euc. i, 11,12?
16. Define a solid angle, and shew in how many ways a solid angle

may be formed with equilateral triangles and squares.

17. Can a solid angle be formed with any three plane angles assumed
at pleasure ?

18. How is a solid angle measured ?

19. What is the limit of the sum of the plane angles which together

can form a solid angle ?

20. Can it be justly said that the parallelopiped and the cube have
the same relation to each other as the rectangle and the square ?

21. What is the length of an edge of a cube whose volume shall be
double that of another cube whose edge is known ?

22. If a straight line be divided into two parts, the cube on the whole
line is equal to the cubes on the two parts together with thrice the

right parallelopiped contained by their rectangle and the whole line.

23. When a cube is cut by a plane obliquely to any of its sides,

the section will be a rectangular parallelogram, always greater than a side

of the cube, if made by cutting the opposite sides.
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24. Shew how to draw a plane cutting two adjacent sides of a cube,
so that the section shall be equal and similar to a side of the cube.

25. The content of a regular parallelopipidon whose length is any
multiple of the breadth, and breadth the same multiple of the depth, is

the same as that of a cube whose edge is the breadth.

26. If a, b, c be the three dimensions, and v the volume of a parallelo*

piped, prove that the superficies is equal to —— y - •

27. How is it shown that the cube described with a given line as one
of the edges, is eight times the cube described with half the line as one
of its edges ?

28. Shew how to transform a given cube into a parallelopiped, whose
three adjacent edges shall be in continual proportion.

29. Is every possible section of a parallelopiped which can be made,
a parallelogram ?

30. Shew how to bisect a parallelopiped, so that the area of the
section may be the greatest possible.

v 31. There are two cylinders of equal altitudes, but the base of one
"or them is three times that of the other : compare the volumes of the
cylinders.

32. How is a right cone generated ? What is meant by the axis and
--^by the base of a cone ?

33. What is Euclid's definition of similar solid figures contained by
planes ? Is this definition liable to any objection ?

, 34. Shew how a prism, pyramid, cylinder and cone may be gene-
crated. In what respects does a prism differ from a. pyramid ?

35. Shew how a triangular prism may be divided into three equal
-^triangular pyramids of the same base and altitude : and find into how
many triangular pyramids a prism can be divided, the base of which is a
polygon of n sides.

>, X 36. Shew how to find the content of a pyramid, whatever be the figure

of the base, the altitude and area of the base being given,

x 37. What solid figure is that, which if cut in any direction whatever
"T>y planes, the sections shall be similar ?

38. If two triangular prisms have the same base and equal ends, they
cannot have their upper edges not coincident.

39. What will be the form of the base of a pyramid whose sides

consist of the greatest possible number of equilateral triangles ?

40. Having given six straight lines of which each is less than the
sum of any two ; determine how many tetrahedrons can be formed,
of which these straight lines are the edges.

\4l. Why cannot a sheet of paper be made to represent the vertex of
a pyramid, without folding ?

42. Define the generation of a sphere. Can any reason be assigned
why Euclid has not defined a circle in a similar manner, as the figure
generated in a plane by the revolution of a straight line about one of its

extremities which remain fixed ?

__ r-n\ 43. Shew that the ratio of the diameter of a sphere, and the side of
the inscribed cube, is as three to unity.

44, Mention the names and define the five regular solids.
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THEOREM I.

Prove that if a straight line be perpendicular to a plane, its projection

on any other plane, produced if necessary, will cut the common intersection

of the two planes at right angles.

Let AB be any plane and CEF another plane intersecting th«

former at any angle in the line EF; and let the line GH be perpea*
dicular to the plane CEF.

Draw GK, IIL perpendicular on the plane AB, and join LK,
then LKis, the projection of the line GH on the plane AB;

produce EF, to meet KL in the point L
;

then EF, the intersection of the two planes, is perpendicular to LK,
the projection of the line GH on the plane AB.
Because the line GH is perpendicular to the plane CEF,

every plane passing through GH, and therefore the projecting

plane GHKL is perpendicular to the plane CEF;
but the projecting plane GHLK is perpendicular to the plane AB;
(constr.)

hence the planes CEF, and AB are each perpendicular to the third

plane GHLK;
therefore EF, the intersection of the planes AB, CEF, is perpen-
dicular to that plane

;

and consequently, EF is perpendicular to every straight line which
meets it in that plane

;

but EF meets LK in that $ane.
Wherefore, EFis perpendicular to KL, the projection of GH oa

the plane AB,
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THEOREM II.

Prove, that four times the square described upon the diagonal of a rec-

tangular parallelopiped, is equal to the sum of the squares described on ths

diagonals of the parallelograms containing the parallelopiped.

Let AD be any rectangular parallelopiped ; and AD, BG two diago-
nals intersecting one another ; also AG, BD, the diagonals of the two
opposite faces HF, CF.

/^>/
/
X̂

/
Then it may be shewn that the diagonals AD, BG, are equal; as

also the diagonals which join CFandHF: and that the four diagonals

of the parallelopiped are equal to one another.

The diagonals AG, BD of the two opposite faces HF, CF are equal

to one another ; also the diagonals of the remaining pairs of the oppo-

site faces are respectively equal.

And since AB is perpendicular to the plane CF, it is perpendicular

to every straight line which meets it in that plane,

therefore AB is perpendicular to BD,
and consequently ABD is a right-angled triangle.

Similarly, GDB is a right-angled triangle.

And the square on AD is equal to the squares on AB, BD, (i. 47.)

also the square on BD is equal to the squares on BC, CD,
therefore the square on AD is equal to the squares on AB, BC, CD

;

similarly the square on BG or on AD is equal to the squares on AB,
BC, CD.

Wherefore the squares on AD and BG, or twice the square on AD,
is equal to the squares on AB, BC, CD, AB, BC, CD;

but the squares on BC, CD are equal to the square on BD, the

diagonal of the face CF

;

similarly, the squares on AB, BC are equal to the square on the

diagonal of the face IIB
;

also the squares on AB, CD, are equal to the square on the diagonal

of the face BF; for CD is equal to BE.
Hence, double the square on AD is equal to the sum of the squares

on the diagonals of the three faces HF, IIB, BC.
In a similar manner, it may be shewn, that doable the square on the

diagonal is equal to the sums of the squares on the diagonals of the

three faces opposite to UK HB, BC.
Wherefore, four times ihe square on the diagonal of the parallelopiped,

is equal to the sum of tne squares on the diagonals of the six faces.

Q
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3. If two straight lines are parallel, the common section of any
two planes passing through them is parallel to either.

4. If two straight lines be parallel, and one of them be inclined

at any angle to a plane ; the other also shall be inclined at the same
angle to the same plane.

0. If two straight lines in space be parallel, their projections on
any plane will be parallel.

6. Shew that if two planes which are not parallel be cut by two
other parallel planes, the lines of section of the first by the last two
will contain equal angles.

7. If four straight lines in two parallel plane3 be drawn, two from
one point and two from another, and making equal angles with

another plane perpendicular to these two, then if the first and third be
parallel, the second and fourth will be likewise.

8. Draw a plane through a given straight line parallel to another

given straight line.

9. Through a given point it is required to draw a plane parallel

to both of two straight lines which do not intersect.

10. From a point above a plane two straight lines are drawn, the

one at right angles to the plane, the other at right angles to a given

line in that plane; shew that the straight line joining the feet of the

perpendiculars is at right angles to the given line.

1 1. AB, A C, AD are three given straight lines at right angles to

one another, AE is drawn perpendicular to CD, and BE is joined.

Shew that BE is perpendicular to CD.
12. Two planes intersect each other, and from any point in one of

them a line is drawn perpendicular to the other, and also another line

perpendicular to the line of intersection of both; shew that the plane

which passes through these two lines is perpendicular to the line of

intersection of the planes.

13. Find the distance of a given point from a given line in space.

14. Draw a line perpendicular to two lines which are not in the

same plane.

15. Two planes being given perpendicular to each other, draw a
third perpendicular to both.

16. Two perpendiculars are let fall from any point on two given
planes, shew that the angle between the perpendiculars will be equal
to the angle of inclination of the planes to one another.

}7. Two planes intersect, straight lines are drawn in one of the
planes from a point in their common intersection making equal ^ngles
with it, shew that they are equally inclined to the other plane.

II.

13. fChree straight lines not in the same plane, but parallel to and
equidistant from each other, are intersected by a plane, and the points
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of intersection joined; shew when the triangle thus formed will be

equilateral and when isosceles.

19. Three straight lines, not in the same plane, intersect in a

point, and through their point of intersection another straight line is

drawn within the solid angle formed by them
;
prove that the angles

which this straight line makes with the first three are together less

than the sum, but greater than half the sum, of the angles which the

first three make with each other.

20. If two solid angles bounded by any number of plane angles,

and having a common vertex, be such that one lies wholly within the

other, the sum of the plane angles bounding the latter will be greater

than the sum of the plane angles bounding the former.

21. Given the three plane angles which contain a solid angle.

Find by a plane construction, the angle between any two of the

containing planes.
' 22. Two of the three plane angles which form a solid angle,

and also the inclination of their planes being given, to find the third

plane angle.

23. Three lines not in the same plane meet in a point; if a plane

cut these lines at equal distances from the point of intersection, shew
that the perpendicular from that point on the plane will meet it in the

center of the circle inscribed in the triangle, formed by the portion of

the plane intercepted by the planes passing through the lines.

24. If two straight lines be cut by four parallel planes, the two
segments intercepted by the first and second planes, have the same
ratio to each other as the two segments intercepted by the third and
fourth planes.

III.

. 25. If planes be drawn through the diagonal and two adjacent
edges of a cube, they will be inclined to each other at an angle equal
to two-thirds of a right angle.

26. A cube is cut by a plane perpendicular to a diagonal plane,
and making a given angle with one of the faces of the cube. Find
the angle which it makes with the other faces of the cube.

27. Shew that a cube may be cut by a plane, so that the section
shall be a square greater in area than the face of the cube in the pro-
portion of 9 to 8.

28. Shew that if a cube be raised on one of its angles so that the
diagonal passing through that angle shall be perpendicular to the
plane which it touches, its projection on that plane will "be a regular
hexagon.

29. If any point be taken within a given cube, the square described
on its distance from the summit of any of the solid angles of the cube,
is equal to the sum of the squares described on its several perpendi-
cular distances from the three sides containing that angle.

30. A rectangular parallelopiped is bisected by all the planei
drawn through the axis of it.
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31. In an oblique parallelopiped the sum of the squares on the
four diagonals, equals the sum of the squares on the twelve edges.

IV.

32. Having three points given in a plane, find a point above the

plane equidistant from them.
33. Bisect a triangular pyramid by a plane passing through one oi

its angles, and cutting one of its sides in a given direction.

34. Given the lengths and positions of two straight lines which do
not meet when produced and are not parallel ; form a parallelopiped

of -which these two lines shall be two of the edges.

35. If a pyramid with a polygon for its base be cut by a plane
parallel to the base, the section will be a polygon similar to the base.

36. If a straight line be at right angles to a plane, the intersection

of the perpendiculars let fall from the several points of that line on
another plane, is a straight line which makes right angles with the

common section of the two planes.

37. ABC, the base of a pyramid whose vertex is O, is an equila-

teral triangle, and the angles JBOC, COA, AOB are right angles;

shew that three times the square on the perpendicular from O on
ABC, is equal to the square on the perpendicular, from any of the

other angular points of the pyramid, on the faces respectively opposite

to them.

38. Of all the angles, which a straight line makes with any straight

lines drawn in a given plane to meet it, the least is that which mea-
sures the inclination of the line to the plane.

39. If, round a line which is drawn from a point in the common
section of two planes at right angles to one of them, a third plane be

made to revolve, shew that the plane angle made by the three planes

is then the greatest, when the revolving plane is perpendicular to each

of the two fixed planes.

40. Two points are taken on a wall and joined by a line which

passes round a corner of the wall. This line is the shortest when it

parts make equal angles with the edge at which the parts of the wall

meet.
41. Find a. point in a given straight line such that the sums of it

distances from two given points (not in the same plane with the giver

straight line) may be the least possible.

42. If there be two straight lines which are not parallel, bu
which do not meet, though produced ever so far both ways, shew tha

two parallel planes may be determined so as to pass, the one througl

the one line, the other through the other ; and that the perpendicula

distance of these planes is the shortest distance of any point that cai

be taken in the one line from any point taken in the other.

V
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LEMMA I.

If from the greater of two unequal magnitudes, there be taken m&re

than its half and from the remainder more than its half; and so on:

there shall at length remain a magnitude less than the least of the proposed

magnitudes. (Book x. Prop, i.)

LetAB and Cbe two unequal magnitudes, of which AB is the greater.

If from AB there be taken more than its half,

and from the remainder more than its half, and so on
;

there shall at length remain a magnitude less than C.

D

B C E

For C may be multiplied so as at length to become greater than A B>
Let it be so multiplied, and let DE its multiple be greater than AB,
and let DE be divided into DF, FG, GE, each equal to C.

From AB take BH greater than its half,

and from the remainder ^jETtake HK greater than its half, and
so on,

until there be as many divisions in AB as there are in DE:
and let the divisions in AB be AK, KII, ITB

;

and the divisions in DE be DF, FG, GE.
And because DE is greater than AB,

and that EG taken from DE is not greater than its half,

but BH taken from AB is greater than its half;

therefore the remainder GD is greater than the remainder HA,
Again, because GD is greater than IIA,

and that GFis not greater than the half of GD,
but UK is greater than the half of HA

;

therefore the remainder FD is greater than the remainder AK:
and FD is equal to C,

therefore Cis greater than AK; that is, AK is less than C. Q.E.D.

And if only the halves be taken away, the same thing may in thi

same way be demonstrated.
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PROPOSITION I. THEOREM.

Similar polygons inscribed in circles, are to one another as the squares

en their diameters.

Let ABODE, FGHKL be two circles, and in them the similar

polygons ABODE, FGHKL;
and let BM, GN be the diameters of the circles:

as the polygon ABODE is to the polygon FGHKL, so shall the

square on BM be to the square on GN.

A F

Join BE, AM, GL, FN.
And because the polygon ABODE is similar to the polygon FGHKL,

the angle BAE is equal to the angle GFL,
and as BA to AE, so is <?_Fto FL:

therefore the two triangles BAE, GFL having one angle in one equal

to one angle in the other, and the sides about the equal angles propoi'

tionals, are equiangular

:

and therefore the angle AEB is equal to the angle FLG:
but AEB is equal to AMB, because they stand upon the same
^circumference : (ill. 21.)

and the angle FLG is, for the same reason, equal to the angle FNG:
therefore also the angle AMB is equal to FNG

:

and the right angle BAM'\% equal to the right angle GFN\ (ill. 31.)

wherefore the remaining angles in the triangles ABM, FGN&re equal,

and they are equiangular to one another

:

therefore as BM to GN, so is BA to GF\ (VI. 4.)

and therefore the duplicate ratio of BM to GN, is the same with

the duplicate ratio of BA to GF: (v. def. 10. and V. 22.)
_

but the ratio of the square on BM to the square on GN, is the

duplicate ratio of that which BMhas to GN; (vi. 20.)

and the ratio of the polygon ABODE to the polygon FGHKL is

the duplicate of that which BA has to GF: (VI. 20.)

therefore as the polygon ABODE is to the polygon FGHKL, so

is the square on BM to the square on GN.
"Wherefore, similar polygons, &c. Q.E.D.

PROPOSITION II. THEOREM.

Circles are to one another as the squares on their diameters.

Let ABCD, EFGHbe two circles, and BD, FH their diameters.

As the square on BD to the square on FH, so shall the circleABCD
be to tb? circle EFGH.

For, if it be not so the square on BD must be to the square on FII,
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as the circleAJ3CD is to some space either less than the circle EFGH,
or greater than it.

A

First, if possible, let it be to a space -Sless than a circle EFGH;
and in the circle EFGII inscribe the square EFGH. (iv. 6.)

This square is greater than half of the circle EFGH',
because, if through the points E, F, G, H, there be drawn tan-

gents to the circle,

the square EFGHis half of the square described about the circle: (1.47.)

and the circle is less than the square described about it

;

therefore the square EFGH is greater than half the circle.

Divide the circumferences EF, FG, GH, HE, each into two equal

parts in the points K, Z, M, N, and join EK, KF, FL, LG, GM,
HM,HN,NE;

therefore each of the triangles EKF, FLG, GMH, HNE, is greater

than half of the segment of the circle in which it stands

;

because, if straight lines touching the circle be drawn through the

points X, L, M, N, and the parallelograms upon the straight lines

EF, FG, GH, HE be completed,

each of the triangles EKF, FLG, GMH, HNE is the half of the

parallelogram in which it is : (i. 41.)

but every segment is less than the parallelogram in which it is

;

wherefore each of the triangles EKF, FLG, GMH,HNE is greater

than half the segment of the circle which contains it.

Again, if the remaining circumferences be divided each into two
equal parts, and their extremities be joined by straight lines, by con-

tinuing to do this, there will at length remain segments of the circle,

which together are less than the excess of the circle EFGH above the

space S;
because, by the preceding Lemma, iffrom the greater of two unequal

magnitudes there be taken more than its half, and from the remainder
more than its half, and so on, there shall at length remain a magnitude
less than the least of the proposed magnitudes.

Let then the segments EK, KF, FL, LG, GM, MH, HN, NE be
those that remain, and are together less than the excess of the circle

EFGH above S:
therefore the rest of the circle, viz. the polygon EKFLGMHN is

greater than the space 8.

Describe likewise in the circle ABCD the polygon AXBOCPDM
similar to the polygon EKFLGMHN:

as therefore the square on BE is to the square on FH, so is the poly-

gon AXBOCPDM to the polygon EKFLGMHN: (xn. 1.)
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but the square on BD is also to the square on FH, as the circle

ABCD is to the space S; (hyp.)

therefore as the circle ABCD is to the space S, so is the polvgon
AXBOCPDR to the polygon EKFLGMHN: (V. 11.)

but the circle ABCD is greater than the polygon contained in it

;

wherefore the space S is greater than the polygon EKFLGMHN :

but it is likewise less, as has been demonstrated ; which is impossible.

Therefore the square on BD is not to the square on FIT, as the circle

A BCD is to any space less than the circle EFGH.
In the same manner, it may be demonstrated, that neither is the

square on FH to the square on BD, as the circle EFGH is to any space

less than the circle ABCD.
Nor is the square onBD to the square on FH, as the circle ABCD

is to any space greater than the circle EFGH.
For, if possi&e, let it be so toT, a space greater than the circle EFGH',

,00
therefore, inversely, as the square on FH to the square on BD, so

is the space Tto the circle ABCD
;

but as the space Tis to the circle ABCD, so is the circle EFGHto

some space, which must be less than the circle ABCD, (v. 14.)

because the space Tis greater, by hypothesis, than the circle EFGH;
therefore as the square onFH is to the square on BD, so is the circle

EFGH to a space less than the circle ABCD, which has been
demonstrated to be impossible

;

therefore the square on BD is not to the square onFH as the circle

ABCD is to any space greater that the circle EFGH:
and it has been demonstrated, that neither is the square on BD to

the square on FH, as the circle ABCD to any space less than the circle

EFGH:
wherefore, as the square on BD is to the square on FH, so is the

circle ABCD to the circle EFGH
Circles, therefore, are, &c. Q/E.O.
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The first comparison of rectilinear areas is made in the first book of

the Elements by the principle of superposition, where two triangles are

coincident in all respects ; next, comparison is made between triangles

and other rectilinear figures when they are not coincident.

In the sixth book, similar triangles are compared by shewing that

they are in the duplicate ratio of their homologous sides, and then by
dividing similar polygons into the same number of similar triangles, and
shewing that the polygons are also in the duplicate ratio of any of their

homologous sides.

In the eleventh book, similar rectilinear solids are compared by
shewing that their volumes are to one another in the triplicate ratio of

their homologous sides.

In the twelfth book anew principle is introduced, called " the method
of exhaustions," which is founded on the principle of exhausting a mag-
nitude or the difference of two magnitudes, by successively taking away
a certain part of it.

The method of exhaustions was employed by the Ancient Geometers
and was strictly rigorous in its principles ; but it was too tedious and
operose in its application to be of extensive utility as an instrument of

investigation. It is exemplified, in Euc. xn. 2, where it is proved that

the areas of circles are proportional to the squares on their diameters.

In demonstrating this truth, it is first shewn by inscribing successively

in one of the circles, regular polygons of four, eight, sixteen, &c. sides,

and thus tending to exhaust the difference between the areas of the

circle and polygon, that a polygon may be found which shall differ from
the circle by an area less than any magnitude that can be assigned : and
then since similar polygons inscribed in circles are as the squares on
their diameters (Euc. xn. 1), the truth of the proposition is established

by means of an indirect proof.

"The method of exhaustions" may be applied to find the circum-
ference and area of a circle. A rectilineal figure may be inscribed in

the circle and a similar one circumscribed about it, and then by con-
tinually doubling the number of sides of the inscribed and circumscribed
polygons, by this principle, it may be demonstrated, that the area of the
circle is less than the area of the circumscribed polygon*, but greater
than the area of the inscribed polygon ; and that as the number of sides

of the polygon is increased, and consequently the magnitude of each
diminished, the differences between the circle and the inscribed and
circumscribed polygons are continually exhausted.

In a similar way the principle is applied to the volumes and surfaces

of the sphere, cone, &c.

The Second Proposition of the twelfth book is perhaps retained
merely as an example of the method employed by the Ancient Geo-
meters. This method has been replaced by the method of prime and
ultimate ratios, which is now employed in the proofs of such propositions

£3 were formerly effected by the method of exhaustions,
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THEOREM I.

If semicircles ADB, BEC be described on the sides AB, BC of a right-

angled triangle, and on the hypotenuse another semicircle AFBGC be de-

scribed, passing through the vertex B; the lunes AFBD and BGCE are

together equal to the triangle ABC.

It has been demonstrated (xil. 2) that the areas of circles are to one

another as the squares on their diameters; it follows also that semi-

circles will be to each other in the same proportion.

Therefore the semicircle ADB is to the semicircle ABC, as the

square on AB is to the square on AC,
and the semicircle CEB is to the semicircle ABC, as the square on

BC is to the square on A C,

hence the semicircles ADB, CEB, are to the semicircle ABC as

the squares on AB, 2? Care to the square on AC;
but the squares on AB, BC are equal to the square on AC, (i. 47.)

therefore the semicircles ADB, CEB are equal to the semicircle

ABC. (V. 14.)

From these equals take the segments AFB, BGC of the semicircle

en AC, and the remainders are equal,

that is, the lunes AFBD, BGCE are equal to the triangle BA C.

THEOREM II.

// on any two segments of the diameter of a semicircle, semicircles be

described, all towards the same parts, the area included between the three

circumferences {called dp/3tj\o9) will be equal to the area of a circle, the

diameter of which is a mean proportional between the segments.

Let ABC be a semicircle whose diameter is AB,
and let AB be divided into any two parts in D,
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and on AD, DC let two semicircles be described on the same side;

also let DB be drawn perpendicular to AC.
Then the area contained between the three semicircles, is equal to

the area of the circle whose diameter is 3D.
Since AC is divided into two parts in C,

the square on AC is equal to the squares on AD, DC, and twice

the rectangle AD, DC-, (II. 4.)

and since BD is a mean proportional between AD, DC',
the rectangle AD, DC is equal to the square on DB, (vi. 17.)

therefore the square on A C is equal to the squares on AD, DC, and
twice the square on DB.

But circles are to one another as the squares on their diameters or
radii, (xn. 2.)

therefore the circle whose diameter hACh equal to the circles whose
diameters are AD, DC, and double the circle whose diameter is BD;

wherefore the semicircle whose diameter is ^4 C is equal to the circle

whose diameter is BD, together with the two semicircles whose dia-

meters are AD and DC:
if the two semicircles whose diameters are AD and DC be taken

from these equals,

therefore the figure comprised between the three semi-circum-
ferences is equal to the circle whose diameter is DB.

THEOREM III.

There can be only five regular solids.

If the faces be equilateral triangles. The angle of an equilateral tri-

angle is one-third of two right angles ; and six angles, each equal to the

angle of an equilateral triangle, are equal to four right angles : and
therefore a number of such angles less than six, but not less than three

are necessary to form a solid angle. Hence there cannot be more than
three regular figures whose faces are equal and equilateral triangles.

If the faces be squares. Since four, angles, each equal to a right

angle, can fill up space round a point in a plane. A solid angle may
be formed with three right angles, but not with a number greater or

less than three. Hence, there cannot be more than one regular solid

figure whose faces are equal squares.

If the faces be equal and regular pentagons. Since each angle of

a regular pentagon is a right angle and a fifth of a right angle : the

magnitude of three such angles being less than four right angles, may
form a solid angle, but four, or more than four, cannot form a solid

angle. Hence, there cannot be more than one regular figure whose
faces are equal and regular pentagons.

If the faces be equal and regular hexagons, heptagons, octagons,

or any other regular figures ; it may be shewn that no number of them
can form a solid angle.

Wherefore there cannot be more than five regular solid figures, of

which, there are three, whose faces are equal and equilateral triangles

;

one, whose faces are equal squares ; and one, whose faces are equal

and regular pentagons.
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PROBLEM IV.

To construct the five regular solids.

The regular Tetrahedron.

Each of the angles of an equilateral triangle is one-third of two
right angles; a solid angle may therefore be formed by three angles

of three equal and equilateral triangles, and the figure formed by the

three bases of the triangles is manifestly an equilateral triangle equal

in magnitude to each of the three given equilateral triangles. The
angles of inclination of every two of the four faces are also equal.

The regular Octahedron.
Through any point O draw three straight lines perpendicular to

each other, take OA, Oa, OB, Ob, OC, Oc equal to one another, and
join the extremities of these lines. The faces ABC, AbC, &c. are

equilateral triangles equal to one another and eight in number ; also

the inclinations of every two contiguous faces are equal.

The regular Icosahedron.

A solid angle may be formed with five angles, each equal to the

angle of an equilateral triangle. At the point A of any equilateral

triangle ABC, let a solid angle be formed with it and four other equal

and equilateral triangles ABB, ABE, AEF, AFC, each equal to the

triangle ABC. Next at the point B, let another solid angle be
formed with the triangle ABC and four others BCH,BHK, BKB,
BBA, each equal to it. The solid angle at B is equal to the solid

angle at A, and the inclinations of every two contiguous faces, are

equal; also the two solid angles have two faces ABC, ABB common.
Next let a third solid angle be formed at C, by placing the two tri-

angles CFG, CGH contiguous to the three CAB, CFA, CHB. The
solid angle at C is equal to that at A or B, and the inclinations of

the contiguous faces make equal angles. Thus two equal and equi-

lateral triangles are placed contiguous one to another, forming three

solid angles at A, B, C, and having every two contiguous faces

equally inclined: also the solid angles formed at B, E, F, G, H, K,
have alternately three and two angles of the equilateral triangles. In
the same manner let another figure equal to this be formed with ten

equal and equilateral triangles, each equal to the triangle ABC.
If these two figures be connected together, so that the points at

which there are two angles of one figure, may coincide with the points

which contain three angles of the other, there will be formed at the

points B, E, F, G, H, K, six equal solid angles, each contained by
five angles of the equilateral triangles, and every two contiguous faces

will have the same inclination.

Hence a figure of twenty faces is formed each equal to the equila-

teral triangle ABC, and having the inclinations of every two conti-

guous faces equal.

The regular Hexahedron.
Since three right angles may form a soiid angle, it is therefore

obvious that the solid angle formed by three equal squares, has every
two of the faces equally inclined to one another ; and with three Other

squares, each equal to the former, a figure is formed, bounded by six
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equal squares, and having every two contiguous faces at right angles

to one another.

The regular Dodecahedron.
Since three angles each equal to the angle of a regular pentagon

may form a solid angle; let ABODE be a regular pentagon, and with

two others each equal to this, let a solid angle .at A be formed ; the

inclinations of every two contiguous faces will be equal. At the, points

B, C, D, E successively, let solid angles be formed by pentagons
equal to ABODE. The solid angles at B, C, D, E, are each equal

to the solid angle at A, and the inclination of every two contiguous

faces is the same. Thus is formed a figure with six equal and regular

pentagons, having the inclination of every two contiguous faces equal,

and the angles at the linear boundary of the figure alternately consist-

ing of an angle of a pentagon and of two angles of two pentagons
equally inclined to each other.

Next, let another figure equal to this be constructed with six pen-

tagons, each equal to the pentagon ABODE.
If these two figures be so placed that the angular poin:ts of the

plane angles in the linear boundary of one, may coincide with the

points at which there are two angles in the other figure ; at each of

these points will be formed ten solid angles, each equal to the angle

at A, and having the inctenation of every two contiguous faces equal

to one another. Hence a regular figure is formed having twelve equal

faces, and the inclinations of every two contiguous faces equal to one

another.

5. Construct a circle the area of which shall have a given ratio to

that of a given circle.

6. Divide a circle into any number of equal parts by means of

concentric circles.

7. To divide a circle into any number of equal parts, the perime-
ters of which shall be equal to the circumference of the circle.

8. Let AB and DC be two diameters of a given circle, at right

angles to each other ; AEB a circular arc described with radius DB or

DA; prove that the area of the \xmeAEBC = area of triangle ADB.
9. Two circles touch each other internally, and the area of the

lune cut out of the larger is equal to twice the area of the smaller

circle. Required the ratio of the diameters of these circles.

10. The diameter of a circle is divided into two parts, upon each
of which as diameters circles are described ; when the remaining area
of the great circle is equal to that of one of these two circles, find the
ratio which the parts of the diameter bear to one another.

11. The diameter of a semicircle ADB is divided into two parts
in C (so that the length of AC is twice that of BO), and upon them
are described the semicircles AEC, CFB. Compare the areas of the
circles which are described on each side of the common tangent CD so

as to touch it and the two semicircles.

12. The centers of three circles A, B, and C are in the same right
line, B and C touch A internally, and each other externally ; P, Q.
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being the points v, here A is touched by B, C respectively ; to find a

point It on A such that the portion of the June PR intercepted be-

tween B and A may be equal to the portion of QR between C and A.
13. On the chord of a quadrant a semicircle is described ; re-

quired the area of the crescent thus formed.

14. Semicircles are described upon the radii CA, CB of a quad-
rant, and intersect each other in a point D, shew that the area
common to both semicircles is equal to the area without them, and
that the remaining areas of the two semicircles are equal, each one-
fourth of the square on AC.

15. If on one of the radii of a quadrant a semicircle be described;
and on the other, another semicircle so described as to touch the former
and the quadrantai arc ; compare the area of the quadrant with the

area of the circle described in the figure bounded by the three curves.

16. Any right-angled triangle BAC is inscribed in a semicircle,

A being the right angle, and AD a perpendicular on the base BC.
If circles be described on the sides BA, AC as diameters, prove that

the areas of these circles will always be to each other in the same ratio

as the segments into wrhich the base is divided by the line AD.
17. If on the two sides of a right-angled triangle, semicircles be

described, and a circle be described touching them both, it will include

the circle whose diameter is the hypotenuse ; and the space between
the two circles will be to the outer circle as twice the rectangle of the

sides of the triangle to the square on the sum of the sides.

II.

18. In different circles the radii which bound equal sectors con-

tain angles reciprocally proportional to their circles.

19. Prove that the sectors of two different circles are equal, when
their angles are inversely as the squares on the radii.

20. If the arc of a semicircle be trisected, and from the points of

section lines be drawn to either extremity of the diameter, the diffe-

rence of the two segments thus made will be equal to the sector which

stands on either of the arcs.

21. If AB be a circular arc, center 0, and AD be drawn perpen-

dicular to BO, and the arc AC taken equal to AD, then the sector

BOC equals the segment ACB.
22. If two points'!?, D, be taken at equal distances from the ends

of the arc of a quadrant, and perpendiculars BG, DKbe drawn to tr*e

extreme radius ; the space BGHD shall be equal to the sector BOD.
23. If circles be inscribed in the triangles formed by drawing the

altitude of a triangle right-angled at the vertex, the circles and the

triangles are proportional.

24. If a semicircle be described on the hypotenuse AB of a right-

angled triangle AB C, and from the center JE", the radius JED be drawn

at right angles to AB, shew that the difference of the segments on the

two sides equals twice the sector CED.
25. If semicircles be described upon the sides of a right-angled

triangle on the interior, the difference between the sum of the circular
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segments thus standing upon the exterior of the sides and segments of

the base, equals the space intercepted by the circumferences described

on the sides.

26. AB, BD are two radii of a circle at right angles to each

other. Produce BD to C, and make BC equal to the arc AD. Join

A C cutting the circumference in E. Then the area EDCis equal to

the area of the segment AE.
27. ABC is an isosceles right-angled triangle. On BC is described

a semicircle BDEC, and BFC is a circle whose radius is AB and
center A. The segment BCFis equal to the segments BAD, ACE.

28. The circle inscribed in a square is equal to four equal circles

touching one another and the sides of that square internally.

29. If the diagonals of a quadrilateral inscribed in a circle cut

each other at right angles, and circles be described on the sides
;
prove

that the sum of two opposite circles will be equal to the sum of the

other two.

30. If two chords of a circle intersect each other either within or

without the circle at right angles ; and if on these segments as dia-

meters, circles be described, the areas of these four circles are together

*qual to that of the original circle.

31. Shew that the semicircles described on the diagonals of <t

right-angled parallelogram together equal the sum of the semicircles

described on the sides.

32. A quadrilateral inscribed in a circle has a diameter passing

through the center ; or has its two diameters at right angles to one
another; on the sides of the quadrilateral semicircles are described;

the four crescents outside are together equal to the quadrilateral.

III.

33. Equal straight lines whose extremities are in the surface of a
sphere, are equally distant from the center of the sphere.

34. The angle between the planes of two great circles of a sphere,

is measured by the arc of a great circle which joins their poles.

35. Every section of a sphere made by a plane is a circle : and if

two parallel planes cut a sphere so that the sections are equal, they

are equidistant from the center.

36. A straight line or a plane can only touch a sphere at one
point ; and at that point the radius of the sphere will be perpendicular
to the line or plane.

37. Shew that all lines drawn from an external point to touch a

sphere are equal to one another ; and thence prove that if a tetrahe«

dron can have a sphere inscribed in it touching its six edges, the sum
of every two opposite edges is the same.

38. If two equal circles cut one another in the diameter, and a
plane cut them perpendicularly to the same diameter, the points of

section of this plane with the circumferences, are in a circle.

39. If three straight lines intersect each other within a sphere
at right angles, each at right angles to the plane of the other two;
the sum of the squares on the six segments is equal to the square on
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the diameter of the sphere, together with twice the rectangle cf the

segments of the diameter made at the point of intersection.

40. Having given an irregular fragment, which contains a portion

of spherical-surface ; shew how the radius of the sphere, to which the

fragment belongs, may be practically determined.

IV.

41. All the sections of a tetrahedron made by planes parallel to

the base are similar to the base.

42. Find the inclination of two contiguous faces of a tetrahedron

to each otner.

43. If on the base of a regular tetrahedron lines be drawn from
any two angles to bisect the opposite sides; the line joining their

point of section with the vertex of the solid is at right angles with

the base.

44. ABCD is a regular tetrahedron; from the vertex A, a per-

pendicular is drawn to the plane BCD meeting it in 0. Shew that

three times the square on AO is equal to twice the square on AB.
45. If the shortest distances between opposite edges of a tetra-

hedron be mutually at right angles, they will bisect the edges.

46. Prove that the shortest distance between two opposite edgei

of a regular tetrahedron is equal to half the diagonal of the square

described on an edge.

47. If in a tetrahedron the shortest distances between the opposite

edges are mutually at right angles, prove that these distances meet in

a point, that they bisect each other, and that the opposite edges of

the tetrahedron are equal.

48. If the line joining the bisections of two edges of a tetrahedron

which do not meet be bisected, the point so found is distant from the

base one-fourth of the perpendicular altitude of the tetrahedron.

49. If the angles of a regular tetrahedron be joined to the centers

of the circles inscribed in its faces, the joining lines will form the

edges of a new tetrahedron parallel to those of the old.

50. The perpendicular drawn from any angle of a regular tetra-

hedron upon the opposite face, will meet that face in the centre o/

the circle which circumscribes that face.

V.

51. The angles of inclination of the faces of a regular tetrahedron

and of a regular octahedron are supplementary to each other.

52. Given the side of a regular octahedron, find the radius of

the inscribed and circumscribed spheres.

53. Draw three diameters of a sphere each at right angles to the

other two; then the six points where the extremities of the diameter?

meet the surface of the sphere, will be the angles of a regular octa-

hedron, and the lines joining the adjacent points will he the edges,

also the three diameters of the sphere its diagonals.
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8. This is a particular case of Euc. i. 22. The triangle however may
be described by means of Euc. I. 1. Let AB be the given base, produce
AB both ways to meet the circles in D, E (fig. Euc. i. I.) ; with center A,
and radius AE, describe a circle, and with center B and radius BD, de-

scribe another circle cutting the former in G. Join GA, GB.
9. Apply Euc. i. 6, 8.

10. This is proved by Euc. i. 32, 13, 5.

11. Let fall also a perpendicular from the vertex on the base.

12. Apply Euc. i. 4.

13. Let CAB be the triangle (fig. Euc. i. 10.) CD the line bisecting

the angle ACD and the base AB. Produce CD, and make DE equal to

CD, and join AE, Then CB may be proved equal to AE, also AE to AC.
14. Let AB be the given line, and C, D the given points. From C

draw CE perpendicular to AB, and produce it making EF equal to CE,
join FD, and produce it to meet the given line in G, which will be the
point required.

15. Make the construction as the enunciation directs, then by Euc.
i. 4, BH is proved equal to CK : and by Euc. I. 13, 6, OB is shewn
to be equal to OC.

16. This proposition requires for its proof the case of equal triangles

omitted in Euclid :—namely, when two sides and one angle are given,

but not the angle included by the given sides.

17. The angle BCD may be shewn to be equal to the sum of the

angles ABC, ADC.
18. The angles ADE, AED may be each proved to be equal to the

complements of the angles at the base of the triangle.

19. The angles CAB, CBA, being equal, the angles CAD, CBE are

equal, Euc. i. 13. Then, by Euc. i. 4, CD is proved to be equal to CE.
And by Euc. i. 5, 32, the angle at the vertex is shewn to be four times

either of the angles at the base.

20. Let AB, CD be two straight lines intersecting each other in

E, and let P be the given point, within the angle AED. Draw EF
bisecting the angle AED, and through P draw PGH parallel to EF,
and cutting ED, EB in G, H. Then EG is equal to EH. And by
bisecting the angle DEB and drawing through P a line parallel to this

line, another solution is obtained. It will be found that the two lines

are at right angles to each other.

21. Let the two given straight lines meet in A, a~\d let P be the

given point. Let PQR be the line required, meeting the lines AQ, AK
in Q and R, so that PQ is equal to QR. Through P draw PS parallel

to AR and join RS. Then APSR is a parallelogram and AS, PR the

diagonals. Hence the construction.

22. Let the two straight lines AB, AC meet in A. In AB take

any point D, and from AC cut off AE equal to AD, and join DE. On
DE, or DE produced, take DF equal to the given line, and through
F draw FG parallel to AB meeting AC in G, and through G draw GH
parallel to DE meeting AB in II . Then GH is the line required.
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23. The two given points may be both on the same side, or one point
may be on each side of the line. If the point required in the line be supposed
to be found, and lines be drawn joining this point and the given points,

an isosceles triangle is formed, and if a perpendicular be drawn on the
base from the point in the line : the construction is obvious.

24. The problem is simply this—to find a point in one side of a
triangle from which the perpendiculars drawn to the other two sides

shall be equal. If all the positions of these lines be considered, it will

readily be seen in what case the problem is impossible.

25. If the isosceles triangle be obtuse-angled, by Euc. I. 5, 32, the
truth will be made evident. If the triangle be acute-angled, the enun-
ciation of the proposition requires some modification.

26. Construct the figure and apply Euc. i. 5, 32, 15.

If the isosceles triangle have its vertical angle less than two-thirds of

a right- angle, the line ED produced, meets AB produced towards the
base, and then 3 . AEF = 4 right angles + AEE. If the vertical angle be
greater than two-thirds of a right angle, ED produced meets AB produced
towards the vertex, then 3 . AEF = 2 right angles + AEE.

27. Let ABC be an isosceles triangle, and from any point D in the
base BC, and the extremity B, let three lines DE, DF, BGr be drawn to

the sides and making equal angles with the base. Produce ED and make
DH equal to DF and join BH.

28. In the isosceles triangle ABC, let the line DFE which meets
the side AC in D and AB produced in E, be bisected by the base
in the point E. Then DC may be shewn to be equal to BE.

29. If two equal straight lines be drawn terminated by two lines

which meet in a point, they will cut off triangles of equal area. Hence
the two triangles have a common vertical angle and their areas and bases
equal. By Euc. I. 32 it is shewn that the angle contained by the bisecting

lines is equal to the exterior angle at the base.

30. (1) When the two lines are drawn perpendicular to the sides j

apply Euc. I. 26, 4. (k) The equal lines which bisect the sides of the

triangle may be shewn to make equal angles with the sides. (3) When the

two lines make equal angles with the sides; apply Euc. I. 26, 4.

31. At C make the angle BCD equal to the angle ACB, and produce
AB to meet CD in D.

32. By bisecting the hypotenuse, and drawing a line from the vertex

to the point of bisection, it may be shewn that this line forms with the

shorter side and half the hypotenuse an isosceles triangle.

33. Let ABC be a triangle, having the right angle at A, and the angle

at C greater than the angle atB, also letAD be perpendicular to the base,

and AE be the line drawn to E the bisection of the base. Then AE may
be proved equal to BE or EC independently of Euc. in. 31.

34. Produce EG, FG- to meet the perpendiculars CE, BF, produced
if necessary. The demonstration is obvious.

35. If the given triangle have both of the angles at the base, acute

angles ; the difference of the angles at the base is at once obvious from
Euc. i. 32. If one of the angles at the base be obtuse, does the property

hold good r

36. Let ABC be a triangle having the angle ACB double of the angle

ABC, and let the perpendicular AD be drawn to the base BC. Take DE
equal to DC and join AE. Then AE may be proved to be equal to EB.

If ACB be an obtuse angle, then AC is equal to the sum of the seg-

ments of the base, made by the perpendicular from the vertex A.
37. Let the sides AB, AC of any triangle ABC be produced, the ex-
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ferior angles bisected by two lines which meet in D, and let AD be joined,

then AD bisects the angle BAC. For draw DE perpendicular on BC,
also DF, DG perpendiculars on AB, AC produced, if necessary. Then DF
may be proved equal to DG, and the squares on DF, DA are equal to the
squares on DG, GA, ofwhich thesquareonFD is equal to the square onDG;
hence AF is equal to AG, and Euc. i. 8, the angle BAC is bisected by AD.

38. The line required will be found to be equal to half the sum
of the two sides of the triangle.

39. Apply Euc. i. 1, 9.

40. The angle to be trisected is one-fourth of a right angle. If an
equilateral triangle be described on one of the sides of a triangle which
contains the given angle, and a line be drawn to bisect that angle of the
equilateral triangle which is at the given angle, the angle contained
between this line and the other side of the triangle will be one-twelfth
of a right angle, or equal to one-third of the given angle.

It may be remarked, generally, that any angle which is the half, fourth,
eighth, &c. part of a right angle, may be trisected by Plane Geometry.

41. Apply Euc. i. 20,

42. Let ABC, DBC be two equal triangles on the same base, ofwhich
ABC is isosceles, fig. Euc. i. 37. By producing AB and making AG equal
to AB or AC, and joining GD, the perimeter of the triangle ABC may be
shewn to be less than the perimeter of the triangle DBC.

43. Apply Euc. i. 20.

44. For the first case, see Theo. 32, p. 76 : for the other two cases,

apply Euc. i. 19.

45. This is obvious from Euc. I. 26.

46. By Euc. i. 29, 6, FC may be shewn equal to each of the lines

EF, FG.
47. Join GA and AF, and prove GA and AF to be in the same

straight line.

48. Let the straight line drawn through D parallel to BC meet
the side AB in E, and AC in F. Then in the triangle EBD, EB is

equal to ED, by Euc. i. 29, 6. Also, in the triangle EAD, the angle
EAD may be shewn equal to the angle EDA, whence EA is equal
to ED, and therefore AB is bisected in E. In a similar way it may
be shewn, by bisecting the angle C, that AC is bisected in F. Or
the bisection of AC in F may be proved when AB is shewn to be
bisected in E.

49. The triangle formed will be found to have its sides respectively
parallel to the sides of the original triangle.

50. If a line equal to the given line be drawn from the point where
the two lines meet, and parallel to the other given line ; a parallelogram
may be formed, and the construction effected.

51. Let ABC be the triangle; AD perpendicular to BC, AE drawn
to the bisection of BC, and AF bisecting the angle BAC. Produce AD
and make DA' equal to AD : join FA', EA'.

52. If the point in the base be supposed to be detenmned, and lines

drawn from it parallel to the sides, it will be found to be in the line which
bisects the vertical angle of the triangle.

53. Let ABC be the triangle, at C draw CD perpendicular to CB and
equal to the sum of the required lines, through D draw DE parallel to CB
meeting AC in E, and draw EF parallel to DC, meeting BC in F. Then
EF is equal to DC. Next produce CB, making CG equal to CE, and join

EG cutting AB in H. From H draw HK perpendicular to EAC, and
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HL perpendicular to BC. Then HK and HL together ape equal to DC,
The proof depends on Theorem 27, p. 75.

54. Let C be the intersection of the circles on the other side of the
base, and join AC , BC. Then the angles CBA, C'BA being equal, the
angles CBP, C'BP are also equal, Euc. i. 13 : next by Euc. i. 4, CP, PC
are proved equal ; lastly prove CC to be equal to CP or VO'.

5o„ In the fig. Euc. i. 1, produce AB both ways to meet the circles

in D arid Enjoin CD, CE, then CDE is an isosceles triangle, having each
of the angles at the base one-fourth of the angle at the vertex. At E
draw EG- perpendicular to DB and meeting DC produced in G. Then
CEGf is an equilateral triangle.

56. Join CC, and shew that the angles CCF, CCG are equal to two
right angles ; also that the line FC'G is equal to the diameter.

57-. Construct the figure and by Euc. i. 32. If the angle BAC be
a right angle, then the angle BDC is half a right angle.

58. Let the lines which bisect the three exterior angles of the tri-

angle ABC form a new triangle A'B'C. Then each of the angles at

A', B', C may be shewn to be equal to half of the angles at A and B,
B and C, C and A respectively. And it will be found that half the
sums of every two pf three unequal numbers whose sum is constant,

have less differences than the three numbers themselves.
59. The first case may be shewn by Euc. i. 4 : and the second by

Euc. i. 32, 6, 15.

60. At I) any point in aline EF, draw DC perpendicular to EF and
equal to the given perpendicular on the hypotenuse. With centre C and
radius equal to the given base describe a. circle cutting EF in B. At C
draw CA perpendicular to CB and meeting EFin A. Then ABC is the
triangle required.

61. Let ABC be the required triangle having the angle ACB a right

angle. In BC produced, take CE equal to AC, and with center B and
radius BA describe a circular arc cutting CE in D, and join AD. Then
DE is the difference between the sum of the two sides AC, CB and tin
hypotenuse AB ; also one side AC the perpendicular is given. Hence
the construction. On any line EB take EC equal to the given side, ED
equal to the given difference. At C, draw CA perpendicular to CB, and
equal to EC, join AD, at A in AD make the angle DAB equal to ADB,
and let AB meet EB in B. Then ABC is the triangle required.

62. (1) Let ABC be the triangle required, having ACB the right

angle. Produce AB to D making AD equal to AC or CB : then BD is

tne sum of the sides. Join DC : then the angle ADC is one-fourth of a

right angle, and DBC is one-half of a right angle. Hence to construct:

at B in BD make the angle DBM equal to half a right angle, and at D
the angle BDC equal to one-fourth of a right angle, and let DC meet BM
in C. At C draw CA at right angles to BC meetingBD in A : andABC
is the triangle required.

(2) Let.ABC be the triangle, C the right angle : from AB cut off

AD equal to AC ; then BD is the difference of the hypotenuse and one
side. Join CD ; then the angles ACD, ADC are equal, and each is half

the supplement of DAC, Avhich is half a right angle. Hence the con*
structiori.

63. Take any straight line terminated' at A. Make AB equal to

the difference of the sides, and AC equal to the hypotenuse. At B
make the angle CBD equal to half a right angle, and with center A
and radius AC describe a circle cutting BD in D : join AD, and draw
DE perpendicular to AC. Then ADE is the required triangle.
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64. Let BC the given base be bisected in D. At D draw DE at

right angles to BC and equal to the sum of one side of the triangle

and the perpendicular from the vertex on the base : join DB, and at B
in BE make the angle EBA equal to the angle BED, and let BA meet
DE in A

;
join AC, and ABC is the isosceles triangle.

65. This construction may be effected by means of Brob. 4, p. 71.

66. The perpendicular from the vertex on the base of an equilateral

triangle bisects the angle at the vertex, which is two-thirds of one right

angle.

67. Let ABC be the equilateral triangle of which a side is required
to be found, having given BD, CD the lines bisecting the angles at B, C.

Since the angles DBC, ©CB are equal, eacli being one-third of a right
angle, the sides BD, DC are equal, and BDC is an isosceles triangle

having the angle at the vertex the supplement of a third of two right

angles. Hence the side BC may be found.

68. Let the given angle be taken (1) as the included angle between
the given sides ; and (2) as the opposite angle to one of the given sides.

In the latter case, an ambiguity will arise if the angle be an acute angle,

and opposite to the less of the two given sides.

69. Let ABC be the required triangle, BC the given base, CD the

given difference of the sides AB, AC : join BD, then DBC by Euc. i. 18,

can be shewn to be half the difference of the angles at the base, and AB
is equal to AD. Hence at B in the given base BC, make the angle CBD
equal to half the difference of the angles at the base. On CB take CE
equal to the difference of the sides, and with center C and radius CE,
describe a circle cutting BD in D : join CD and produce it to A, making
DA equal to DB. Then ABC is the triangle required.

70. On the line which is equal to the perimeter of the required tri-

angle describe a triangle having its angles equal to the given angles.

Then bisect the angles at the base ; and from the point where these lines

meet, draw lines parallel to the sides and meeting the base.

71. Let ABC be the required triangle, BC the given base, and the

side AB greater than AC. Make AD equal to AC, and draw CD.
Then the angle BCD may be shewn to be equal to half the difference,

and the angle DCA equal to half the sum of the angles at the base.

Hence ABC, ACB the angles at the base of the triangle are known.
72. Let the two given lines meet in A, and let B be the given point.

If BC, BD be supposed to be drawn making equal angles with AC,
and if AD and DC be joined, BCD is the triangle required, and the figure

ACBD may be shewn to be a parallelogram. Whence the construction.

73. It can be shewn that lines drawn from the angles of a triangle to

bisect the opposite sides, intersect each other at a point which is two-

thirds of their lengths from the angular points from which they are drawn.

Let ABC be the triangle required, AD, BE, CF the given lines from the

angles drawn to the bisections of the opposite sides and intersecting in G.

Produce GD, making DH equal to DG, and* join BH, CH : the figure

GBHC is a parallelogram. Hence the construction.

74. Let ABC (fig. to Euc. I. 20.) be the required triangle, having
the base BC equal to the given base, the angle ABC equal to the given

angle, and the two sides BA, AC together equal to the given line BD.
Join DC, then since AD is equal to AC, the triangle ACJQ is isosceles,

and therefore the angle ADC is equal to the angle. ACD. Hence the

construction.

75. Let ABC be the required triangle (fig. to Euc. I. 18), having the

angle ACB equal to the given angle, and the base' BC equal to the given
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line, also CD equal to the difference of the two sides AB, AC. If BD
be joined, then ABD is an isosceles triangle. Hence the synthesis.

Does this construction hold good in all cases ?

76. Let ABC be the required triangle, (fig. Euc. i. 18), of which the

side BC is given and the angle BAG, also CD the difference between the
sides AB, AC. Join BD ; then AB is equal to AD, because CD is their

difference, and the triangle ABD is isosceles, whence the angle ABD is

equal to the angle ADB ; and since BAD and twice the angle ABD
are equal to two right angles, it follows that ABD is half the supplement
of the given angle BAG. Hence the construction of the triangle.

77. Let AB be the given base : at A draw the line AD to which
the line bisecting the vertical angle is to be parallel. At B draw BE
parallel to AD ; from A draw AE equal to the given sum of the two
sides to meet BE in E. At B make the angle EBC equal to the angle
BEA, and draw CF parallel to AD. Then ACB is the triangle required.

78. Take any point in the given line, and apply Euc. i. 23, 31.

79. On one of the parallel lines take EE equal to the given line, and
with center E and radius EE describe a circle cutting the other in G.
Join EG, and through A draw ABC parallel to EG.

80. This will appear from Euc. i. 29, ]5, 26.

81. Let AB, AC, AD, be the three lines. Take any point E in AC,
and on EC make EF equal to EA. through F draw FG parallel to AB,
join GE and produce it to meet AB in H. Then GE is equal to GH.

82. Apply Euc. i. 32, 29.

83. From E draw EG perpendicular on the base of the triangle,

then ED and EF may each be proved equal to EG, and the figure shewn
to be equilateral. Three of the angles of the figure are right angles.

84. The greatest parallelogram which can be constructed with given
sides can be proved to be rectangular.

85. Let AB be one of the diagonals : at A in AB make the angle
BAC less than the required angle, and at A in AC make the angle CAD
equal to the required angle. Bisect AB in E and with center E and
radius equal to half the other diagonal describe a circle cutting AC, AD
in F, G. Join FB, BG : then AFBG is the parallelogram required.

86. This problem is the same as the following ; having given the
base of a triangle, the vertical angle and the sum of the sides, to construct

the triangle. This triangle is one half oi the required parallelogram.

87. Draw a line AB equal to the given diagonal, and at the point A
make an angle BAC equal to the given angle. Bisect AB in D, and
through D draw a line parallel to the given line and meeting AC in C.

This will be the position of the other diagonal. Through B drdw BE
parallel to CA, meeting CD produced in E

;
join AE, and BC. Then

ACBE is the parallelogram required.

88. Construct the figures and by Euc. i. 24.

89. By Euc. i. 4, the opposite sides may be proved to be equal.

90. Let ABCD be the given parallelogram ; construct the other

parallelogram A'B'C'D' by drawing the lines required, also the dia-

gonals AC, A'C, and shew that the triangles ABC, A'B'C are equi-

angular.

91. A'D' and B'C may be proved to be parallel.

92. Apply Euc. i. 29, 32.

93. The points D, D', are the intersections of the diagonals of two
rectangles : if the rectangles be completed, and the lines OD, OD' be
produced, they will be the other two diagonals.

94. Let the line drawn from A fall without the parallelogram, and
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let CC, BB', DD', be the perpendiculars from C, B, D, on the line drawn
from A ; from B draw BE parallel to AC, and the truth is manifest.
Next, let the line from A be drawn so as to fall within the parallelogram.

95. Let the diagonals intersect in E. In the triangles DCB, CDA,
two angles in each are respectively equal and one side DE : wherefore
the diagonals DB, AC are equal : also since DE, EC are equal, it follow?

that EA, EB are equal. Hence DEC, AEB are two isosceles triangles

having their vertical angles equal, wherefore the angles at their bases
are equal respectively, and therefore the angle CDB is equal to DBA.

96. (1) By supposing the point P found in the side AB of the paral-

lelogram ABCD, such that the angle contained by AP, PC may be bisected

by the line PD ; CP may be proved equal to CD ; hence the solution.

(2) By supposing the point P found in the side AB produced, so that

PD may bisect the angle contained by ABP and PC ; it may be shewn
that the side AB must be produced, so that BP is equal to BD.

97. This may be shewn by Euc. i. 35.

98. Let D, E, E be the bisections of the sides AB, BC, CA of the
triangle ABC : draw DE, EE, FD ; the triangle DEE is one-fourth of the
triangle ABC. The triangles DBE, EBE are equal, each being one-fourth
of the triangle ABC : DE is therefore parallel to BE, and DBEEis a

parallelogram of which DE is a diagonal.

99. This may be proved by applying Euc.i. 38.

100. Apply Euc. i. 37, 38.

101. On any side BC of the given triangle ABC, take BD equal to the
given base ; join AD, through C draw CE parallel to AD, meeting BA pro-

duced if necessary in E, join ED ; then BDE is the triangle required.

By a process somewhat similar the triangle may be formed when the al-

titude is given.

102. Apply the preceding problem (101) to make a triangle equal to

one of the given triangles and of the same altitude as the other given tri-

angle. Then the sum or difference can be readily found.

103. Eirst construct a triangle on the given base equal to the given
triangle ; next form an isosceles triangle on the same base equal to this

triangle.

104. Through A draw AD parallel to BC the base of the triangle
j

from B draw BD at right angles to BC to meet AD and join DC.
105. Make a triangle equal to the given parallelogram upon the

given line, and then a triangle equal to this triangle, having an angle

equal to the given angle.

106. If the figure ABCD be one of four sides
;
join the opposite

angles A, C of the figure, through D draw DE parallel to AC meeting

BC produced in E, join AE :—the triangle ABE is equal to the four-

sided figure ABCD.
If the figure ABCDE be one of five sides, produce the base both ways,

and the figure may be transformed into a triangle, by two constructions

similar to that employed for a figure of four sides. If the figure consists

of six, seven, or any number of sides, the same process must be repeated.

107. Draw two lines from the bisection of the base parallel to the

two sides of the triangle.

108. This may be shewn ex absurdo.

109. On the same base AB, and on the same side of it, let two triangles

ABC, ABD be constructed, having the side BD equal to BC, the angle

ABC a right angle, but the angle ABD not a right angle ; then the triangle

ABC is greater than ABD, whether the angle ABD be acute or obtuse.

110. Let ABC be a triangle whose vertical angle is A, and whose
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base BC is bisected in D : let any line EDG be drawn through D, meet-
ing AC the greater side in G and AB produced in E, and forming a triangle

AEG having the same vertical angle A. Draw BH parallel to AC, and
the triangles BDH, GDC are equal. Euc. i. 26.

111. Let two triangles be constructed on the same base with equal

perimeters, of which one is isosceles. Through the vertex of that which
is not isosceles draw a line parallel to the base, and intersecting the

perpendicular drawn from the vertex of the isosceles triangle upon the

common base. Join this point of intersection and the extremities ofthe base.

112. (1) DF bisects the triangle ABC (fig. Prop. 6, p. 73.) On each
side of the point F in the line BC, take FG, FH, each equal to one-third

of BF, the lines DG, DH shall trisect the triangle. Or,

Let ABC be any triangle, D the given point in BC. Trisect BC in E,
F. Join AD, and draw EG, FH parallel to AD. Join DG, DH ; these

lines trisect the triangle. Draw AE, AF and the proof is manifest.

(2) Let ABC be any triangle ; trisect the base BC in D, E, and join

AD, AE. From D, E, draw DP, EP parallel to AB, AC and meeting
in P. Join AP, BP, CP ; these three lines trisect the triangle.

(3) Let P be the given point within the triangle ABC. Trisect the

base BC in D, E. From the vertex A draw AD, AE, AP. Join PD,
draw AG parallel to PD and join PG. Then BGPA is one-third of the

triangle. The problem may be solved by trisecting either of the other

two sides and making a similar construction.

113. The base may be divided into nine equal parts, and lines may
be drawn from the vertex to the points of division. Or, the sides of the

triangle may bo trisected, and the points of trisection joined.

114. It is proved, Euc. i. 34, that each of the diagonals of a parallelo-

gram bisects the figure, and it may be shewn that they also bisect each
other. It is hence manifest that any straight line, whatever may be its

position, which bisects a parallelogram, must pass through the intersec-

tion of the diagonals.

115. See the remark on the preceding problem 114.

116. Trisect the side AB in E, F, and draw EG, FH parallel to AD
or BC, meeting DC in G and H. If the given point P be in EF, the two
lines drawn from P through the bisections of EG and FH will trisect the

parallelogram. If P be in FB, a line from P through the bisection of

FH will cut off one-third of the parallelogram, and the remaining trape-

zium is to be bisected by a line from P, one of its angles. If P coincide

with E or F, the solution is obvious.

117. Construct a right-angled parallelogram by Euc. I. 44, equal to

the given quadrilateral figure, and from one of the angles, draw a lm*
to meet the opposite side and equal to the base of the rectangle,' and a

line from the adjacent angle parallel to this line will complete the rhombus.
118. Bisect BC in D, and through the vertex A, draw AE parallel to

BC, with center D and radius equal to half the sum of AB, AC, describe

a circle cutting AE in E.

119. Produce one side of the square till it becomes equal to the di-

agonal, the line drawn from the extremity of this produced side and pa-

rallel to the adjacent side of the square, and meeting the diagonal producd,

determines the point required.

120. Let fall upon the diagonal perpendiculars from the opposite angles

of the parallelogram. These perpendiculars are equal, and each pair of

triangles is situated on different sides of the same base and has equal al*

titudes. If the point be not on the diagonal, draw through the giveu

point, a line parallel to a side of the parallelogram.
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121. One case is included in Theo. 120. The other case, when the

point is in the diagonal produced, is obvious from the same principle.

122. The triangles I)CF, ABF may be proved to be equal to half

of the parallelogram by Euc. i. 41.

123. Apply Euc. i. 41, 38.

124. If a line be drawn parallel to AD through the point of intersec-

tion of the diagonal, and the line drawn through O parallel to AB ; then
by Euc. i. 43, 41, the truth of the theorem is manifest.

125. It may be remarked that parallelograms are divided into pairs

of equal triangles by the diagonals, and therefore by taking the triangle

ABD equal to the triangle ABC, the property may be easily shewn.
126. The triangle ABD is one half of the parallelogram ABCD,

Euc. i. 34. And the triangle DKC is one half of the parallelogram
CDHG, Euc. i. 41, also for the same reason the triangle AKB is one
half of the parallelogram AHGB : therefore the two triangles DKC,
AKB are together one half of the whole parallelogram ABCD. Hence
the two triangles DKC, AKB are equal to the triangle ABD : take from
these equals the equal parts which are common, therefore the triangle

CKF is equal to the triangles AHK, KBD : wherefore also taking AHK
from these equals, then the difference of the triangles CKF, AHK is

equal to the triangle KBC : and the doubles of these are equal, or the
difference of the parallelograms CFKG, AHKE is equal to twice the
triangle KBD.

127. First prove that the perimeter of a square is less than the peri-

meter of an equal rectangle : next, that the perimeter of the rectangle is

less than the perimeter of any other equal parallelogram.
128. This may be proved by shewing that the area of the isosceles

triangle is greater than the area of any other triangle which has the same
vertical angle, and the sum of the sides containing that angle is equal to

the sum of the equal sides of the isosceles triangle.

129. Let ABC be an isosceles triangle (fig. Euc. i. 42), AE perpen-
dicular to the base BC, and AECG the equivalent rectangle. Then AC
is greater than AE, &c.

130. Let the diagonal AC bisect the quadrilateral figure ABCD.
Bisect AC in E, join BE, ED, and prove BE, ED in the same straight

line and equal to one another.
131. Apply Euc. i. 15.

132. Apply Euc. i. 20.

133. This may be shewn by Euc. i. 20.

134. LetAB be the longest and CD the shortest side of the rectangular
figure. Produce AD, BC to meet in E. Then by Euc. i. 32.

135. Let ABCD be the quadrilateral figure, and E, F, two points in

the opposite sides AB, CD, join EF and bisect it in G; and through
G draw a straight line HGK terminated by the sides AD, BC; and
bisected in the point G. Then EF, HK are the diagonals of the required
parallelogram.

136. After constructing the figure, the proof offers no difficulty.

137. If any line be assumed as a diagonal, if the four given lines

taken two and two be always greater than this diagonal, a four-sided
figure may be constructed having the assumed line as one of its diagonals :

and it may be shewn that when the quadrilateral is possible, the sum
of every three given sides is greater than the fourth.

138. Draw the two diagonals, then four triangles are formed, two on
one side of each diagonal. Then two ofthe lines drawn through the points
of bisection of two sides may be proved parallel to one diagonal, and two

R
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parallel to die other diagonal, in the same way as Theo. 97, supra. The
other property is manifest from the relation of the areas of the triangles
made by the lines drawn through the bisections of the sides.

139. It is sufficient to suggest, that triangles on equal bases, and of

equal altitudes, are equal.

140. Let the side AB be parallel to CD, and let AB be bisected in E
and CD in F, and let EF be drawn. Join AF, BF, then Euc. i. 38.

141. Let BCED be a trapezium of which DC, BE are the diagonals
intersecting each other in G. If the triangle DBG be equal to the triangle

EGrC, the side DE may be proved parallel to the side BC, by Euc. i. 39.

142. Let ABCD be the quadrilateral figure having the sides AB,
CD, parallel to one another, and AD, BC equal. Through B draw BE
parallel to AD, then ABED is a parallelogram.

143. Let ABCD be the quadrilateral having the side AB parallel

to CD. Let E, F be the points of bisection of the diagonals BD, AC,
and join EF and produce it to meet the sides AD, BC in G and H.
Through H draw LHK parallel to DA meeting DC in. L and AB pro-
duced in K. Then BK is half the difference ofDC and AB.

144. (1) Reduce the trapezium ABCD to a triangle BAE by Prob.
\06, supra, and bisect the triangle BAE by a line AF from the vertex.

If F fall without BC, through F draw FG parallel to AC or DE, and
join AG.

Or thus. Draw the diagonals AC, BD : bisect BD in E, and join AE,
EC. Draw FEG parallel to AC the other diagonal, meeting AD in F,

and DC in G. AG being joined, bisects the trapezium.

(2) Let E be the given point in the side AD. Join EB Bisect the
quadrilateral EBCD by EF. Make the triangle EFG equal to the tri-

angle EAB, on the same side of EF as the triangle EAB. Bisect the tri-

angle EFG by EH. EH bisects the figure.

145. If a straight line be drawn from the given, point through the in-

tersection of the diagonals and meeting the opposite side of the square ; ;

the problem is then reduced to the bisection of a trapezium by a line drawn
from one of its angles.

146. If the four sides of the figure be of different lengths, the truth of

the theorem may be shewn. If, however, two adjacent sides of the figure

be equal to one another, as also the other two, the lines drawn from the

angles to the bisection of the longer diagonal, will be found to divide the

trapezium into four triangles which are equal in area to one another.

Euc. i. 38.

147. Apply Euc. i. 47, observing that the shortest side is one half

of the longest.

148. Find by Euc. i. 47, a line the square on which shall be seven

times the square on the given line. Then the triangle which has these

two lines containing the right angle shall be the triangle required.

149. Apply Euc. i. 47.

1 50. Let the base BC be bisected in D, and DE be drawn perpendicu-
lar to the hypotenuse AC. Join AD : then Euc. i. 47.

151. Construct the figure, and the truth is obvious from Euc. I. 47.

152. See Theo. 32, p. 76, and apply Euc. i. 47.

153. Draw the lines required and apply Euc. i. 47.

154. Apply Euc. i. 47.

155. Apply Euc. i. 47.

156 Apply Euc. i. 47, observing that the square, on any line is IQU*

^imes the square on half the line,
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157. Apply Eac. i. 47, to express the squares on the three sides in

lerms of the squares on the perpendiculars and on the segments of AB.
158. By Euc. i. 47. bearing in mind that the square described on any

line is four times the square described upon half the line.

159. The former part is at once manifest by Euc. i. 47. Let the dia-

gonals of the square be drawn, and the given point be supposed to coincide

with the intersection of the diagonals, the minimum is obvious. Find its

value in terms of the side.

160. (a) This is obvious from Euc. I. 13.

(6) Apply Euc. i. 32, 29.

(c) Apply Euc. i. 5, 29.

(cl) Let AL meet the base BC in P, and let the perpendiculars from
E, K meet BC produced in M and N respectively ; then the triangles

APB, EMB maybe proved to be equal in all respects, as also APC, CKN.
(e) Let fall DQ perpendicular on EB produced. Then the triangle

DQB may be proved equal to each of the triangles ABO, DBF ; whence
the triangle DBF is equal to the triangle ABC.

Perhaps however the better method is to prove at once that the tri-

angles ABC, FBD are equal, by shewing that they have two sides equal
in each triangle, and the included angles, one the supplement of the other.

(/) If DQ be drawn perpendicular on FB produced, FQ may be
proved to be bisected in the point B, and DQ equal to AC. Then the
square on FD is found by the right-angled triangle EQD. Similarly, the
square on KE is found, and the sum of the squares on FD, EK, GH will be
found to be six times the square on the hypotenuse.

(g) Through A draw PAQ parallel to BC and meeting DB, EC
produced in P, Q. Then by the right angled triangles.

161. Let any parallelograms be described on any two sides AB, AC
of a triangle ABC, and the sides parallel to AB, AC be produced to meet
in a point P. Join PA. Then on either side of the base BC, let a paral-

lelogram be described having two sides equal and parallel to AP. Pro-
duce AP and it will divide the parallelogram on BC into two parts re-

spectively equal to the parallelograms on the sides. Euc. i. 35, 36.

162. Let the equilateral triangles ABD, BCE, CAF be described on
AB, BC, CA, the sides of the triangle ABC having the right angle at A.

Join DC, AK : then the triangles DBC, ABE are equal. Next draw
DG perpendicular to AB and join CG : then the triangles BDG, DAG,
DGC are equal to one another. Also draw AH, EK perpendicular to

BC ; the triangles EKH, EKA are equal. Whence may be shewn that

the triangle ABD is equal to the triangle BHE, and in a similar way may
be shewn that CAF is equal to CHE.

The restriction is unnecessary : it only brings AD, AE into the same
hue.

GEOMETRICAL EXERCISES ON BOOK II.

HINTS, &c.

6. See the figure Euc. it. 5.

7. This Problem is equivalent to the following : construct an isosceles

right-angled triangle, having given one of the sides which contains the

yight angle.

8. Construct the square on AB3 jffta the property is obvious

ft 3
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9. The sum of the squares on the two parts of any lino is least

when the two parts are equal.

10. A line may be found the square on which is double the square
on the given line. The problem is then reduced to :—having given the
hypotenuse and the sum of the sides of a right-angled triangle, con.

struct the triangle.

11. This follows from Euc. ir. 5, Cor.

12. This problem is, in other words, Given the sum of two lines and
the sum of their squares, to find the lines. Let AB be rhe given straight

line, at B draw BC at right angles to AB, bisect the angle ABC by BD.
On AB take AE equal to the side of the given square, and with center A
and radius AE describe a circle cutting BD in D, from D draw DF per-

pendicular to AB, the line AB is divided in F as was required.

13. Let AB be the given line. Produce AB to C making BC equal
to three times the square on AB. From BA cut off BD equal to BC

;

then D is the point of section such that the squares on AB and BD are

double of the square on AD.
14. In the fig. Euc. n. 7. Join BF, and draw FL perpendicular on

GD. Half the rectangle DB, BG, may be proved equal to the rectangle

AB, BC.
Or, join KA, CD, KD, CK. Then CK is perpendicular to BD. And

the triangles CBD, KBD are each equal to the triangle ABK. Hence,
twice the triangle ABK is equal to the figure CBKD ; but twice the
triangle ABK is equal to the rectangle AB, BC ; and the figure CBKD
is equal to half the rectangle DB, CK, the diagonals of the squares on
AB, BC. Wherefore, &c.

15. The difference between the two unequal parts may be shewn to

be equal to twice the line between the points of section.

16. This proposition is only another form of stating Euc. II. 7.

17. In the figure, Theo. 7, p. 74, draw PQ, PR, PS perpendiculars on
AB, AD, AC respectively: then since the triangle PAC is equal to the

two triangles PAB, PAD, it follows that the rectangle contained by
PS, AC, is equal to the sum of the rectangles PQ, AB, and PR, AD.j
"When is the rectangle PS, AC equal to the difference of the other twol
rectangles ?

18. Through E draw EG parallel to AB, and through F draw FHK
parallel to BC and cutting EG in H. Then the area of the rectangle is

made up of the areas of four triangles ; whence it may be readily shewn
that twice the area of the triangle AFE, and the figure AGHK is equal to

the area ABCD.
19. Apply Euc. II. 11.

20. The vertical angles at L may be proved to be equal, and each o!

them a right angle.

21. Apply Euc. ii. 4, 11. I. 47.

22. Produce FG, DB to meet in L, and draw the other diagona

LHC, which passes through H, because the complements AG, BK an
equal. Then LH may be shewn to be equal to Ff, and to Dd.

23. The common intersection of the three lines divides each into tw<

parts, one of which is double of the other, and this point is the vertex o

three triangles which have lines drawn from it tc the bisection of th »]

*»as«s. Apply Euc. n. 12, 13.

24. Apply Theorem 3, p. 114, and Euc. I. 47.

25. This will be found to be that particular case of Euc. n. 12

vluch the distance of the obtuse angle from the foot of the perpendicular
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is half of the side subtended by the right angle made by the perpendicular

and the base produced.
26. (1) Let the triangle be acute-angled, (Euc. u. 13, fig. 1.)

Let AC be bisected in E, and BE be joined ; also EF be drawn per-

pendicular to BC. EF is equal to EC. Then the square on BE may be

proved to be equal to the square on BC and the rectangle BD, BC.
(2) If the triangle be obtuse-angled, the perpendicular EF falls within

or without the base according as the bisecting line is drawn from the obtuse

or the acute angle at the base.

27. This may be shewn from theorem 3. p. 114.

28. Let the perpendicular AD be drawn from A on the base BC. It

may be shewn that the base BC must be produced to a point E, such
that CE is equal to the difference of the segments of the base made by
the perpendicular.

29. Since the base and area are given, the altitude of the triangle is

known. Hence the problem is reduced to ;—Given the base and altitude

of a triangle, and the line drawn from the vertex to the bisection of the

base, construct the triangle.

30. This follows immediately from Euc. i. 47.

31. Apply Euc. ii. 13.

32. The truth of this property depends on the fact that the rectang>.

contained by AC, CB is equal to that contained by AB, CD.
33. Let P the required point in the base AB be supposed to be known.

Join CP. It may then be shewn that the property stated in the Prob-
lem is contained in Theorem 3. p. 114.

34. This may be shewn from Euc. i. 47 ; n. 5. Cor.

35. From C let fall CF perpendicular on AB. Then ACE is an ob-

tuse-angled, and BEC an acute-angled triangle. Apply Euc. n. 12, 13,

and by Euc. i. 47, the squares on AC and CB are equal to the square
on AB.

36. Apply Euc. i. 47, ii. 4 ; and the note p. 102, on Euc. n. 4.

37. Draw a perpendicular from the vertex to the base, and apply
Euc. i. 47 ; ii. 5, Cor. Enunciate and prove the proposition when the
straight line drawn from the vertex meets the base produced.

38. This follows directly from Euc. ii. 13, Case 1.

39. The truth of this proposition may be shewn from Euc. i. 47 ; n. 4.

40. Let the square on the base of the isosceles triangle be described.

Draw the diagonals of the square, and the proof is obvious.

41. Let ABC be the triangle required, such that the square on AB
is three times the square on AC or BC. Produce BC and draw AD per-

pendicular to BC. Then by Euc. u. 12, CD may be shewn to be equal
to one half of BC. Hence the construction.

42. Apply Euc. n. 12, and Theorem 38, p. 118.

43. Draw EF parallel to AB and meeting tk*j base in F ; draw also

EG perpendicular to the base. Then by Euc. i. 47 ; n. 5, Cor.

44. Bisect the angle B by BD meeting the opposite side in D, and
draw BE perpendicular to AC. Then by Euc. i. 47 ; n. 5, Cor.

45. This follows directly from Theorem 3, p. 114.

46. Draw the diagonals intersecting each othc? in P, and join OP.
ByTheo. 3, p. 114.

47. Draw from any two opposite angles, straight lines to meet in the

bisection of the diagonal joining the other angles. Then by Euc. n. 12, 13.

48. Draw two lines from the point of bisection of either of the bi-

sected sides to the extremities of the opposite side ; and three triangles

will he formed, two on one of the bisected sides and one on the other, in
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each of which is a, line drawn from the vertex to the bisection of the base.

Then by Theo. 3, p, 114.

49. If the extremities of the two lines which bisect the opposite sides
of the trapezium be joined, the figure formed is a parallelogram which
has its sides respectively parallel to, and equal to, half the diagonals of

the trapezium. The sum of the squares on the two diagonals of the tra-
pezium may be easily shewn to be equal to the sum of the squares on
the four sides of the parallelogram.

50. Draw perpendiculars from the extremities of one of the .parallel

sides, meeting the other side produced, if necessary. Then from the four
right-angled triangles thus formed, may be shewn the truth of the pro-
position.

51. Let AD be parallel to BC in the figure ABCD. Draw the diagonal

AC, then the sum of the triangles ABC, AUG may be . shewn to be equal to

the rectangle contained by the altitude and half the sum of AD and BC.
52. Let ABCD be the trapezium, having the sides AB, CD, parallel,

and AD, BC equal. Join AC and draw AE perpendicular to DC. Then
byEuc.n. 13.

53. Let ABC be any triangle ; AHKB, AGFC, BDEC, the squares
upon their sides ; EF, GH, KL the lines joining the angles of the squares.
Produce GA, KB, EC, and draw HN, DQ, FR perpendiculars upon them
respectively : also draw AP, BM, CS perpendiculars on the sides of the
triangle. Then AN may be proved to be equal to AM ; CR to CP ; and
BQ to BS ; and by Euc. n. 12, 13.

54. Convert the triangle into a rectangle, then Euc. n. 14.

55. Find a rectangle equal to the two figures, and apply Euc. n. 14.

56. Find the side of a square which shall be equal to the given
rectangle. See Prob. i. p. 113.

57. On any line PQ take AB equal to the given difference of the

sides of the rectangle, at A draw AC at right angles to AB, and equal to

the side of the given square ; bisect AB in O and join OC ; with center

O and radius OC describe a semicircle meeting PQ in D and E. Then
the lines AD, AE have AB for their difference, and the rectangle con-

tained by them is equal to the square on AC.
58. Apply Euc. n. 14.

GEOMETRICAL EXERCISES ON BOOK III.

HINTS, &c.

7. Euc. in. 3, suggests the construction.

8. The given point may be either within or without the circle. Find
the center of the circle, and join the given point and the center, and upon
this line describe a semicircle, a line equal to the given distance may be
drawn from the given point to meet the arc of the semicircle. When
the point is without the circle, the given distance may meet the diameter

produced.
9. This may be easily shewn to be a straight line passing through

the center of the circle.

10. The two chords form by their intersections the sides of two isos-

celes triangles, of which the parallel chords in the circle are the bases
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11. The angles in equal segments are equal, and by Euc. I. 29. If

the chords are equally distant from the center,, the lines intersect the

diameter in the center of the circle.

12. Construct the figure and the arc BC may be proved equal to the

arc BC.
13. The point determined by the lines drawn from the bisections of

the chords and at right angles to them respectively, will be the center of

the required circle.

14. Construct the figures : the proof offers no difficulty.

15. From the centre C of the circle, draw CA, CB at right angles to

each other meeting the circumference ; join AB, and draw CD perpendicular

to AB.
16. Join the extremities of the chords, then Euc. i. 27 ; iii. 28.

17. Take the center O, and join AP, AO, &c. and apply Euc. I. 20.

18. Draw any straight line intersecting two parallel chords and meet-
ing the circumference.

19. Produce the radii to meet the circumference.

20. Join AD, and the first equality follows directly from- Euc. in.

20, i. 32. Also by joining AC, the second equality may be proved in a
similar way. If however the line AD do not fall on the same side of the
center O as E, it will be found that the difference, not the sum of the two
angles, is equal to 2 . AED. See note to Euc. in. 20, p. 155.

21. Let DKE, DBO (fig. Euc. in. 8) be two lines equally inclined

to DA, then KE may be proved to be equal to BO, and the segments cut
off by equal straight lines in the same circle, as well as in equal circles,

are equal to one another.

22. Apply Euc. i. 15, and in, 21.

23. This is the same as Euc. in. 34, with the condition, that the line

must pass through a given point.

24. Let the segments AHB, AKC be externally described on the
given lines AB, AC, to contain angles equal to BAC. Then by the con-
verse to Euc. hi. 32, AB touches the circle AKC, and AC the circle AHB.

25. Let ABC be a triangle of which the base or longest side is BC,
and let a segment of a circle be described on BC. Produoe BA, CA to

meet the arc of the segment in D, E, and join BD, CE. If circles be de-

scribed about the triangles ABD, ACE, the sides AB, AC shall cut off

segments similar to the segment described upon the base BC.
26. This is obvious from the note to Euc. in. 26, p. 156.

27. The segment must be described on the opposite side of the pro-

duced chord. By converse of Euc. in. 32.

28. If a circle be described upon the side AC as a diameter, the cir-

cumference will pass through the points D, E. Then Euc. in. 21.

29. Let AB, AC be the bounding radii, and D any point in the arc

BC, and DE, DF, perpendiculars from D on AB, AC. The circle de-

scribed on AD will always be of the same magnitude, and the angle EAF
in it, is constant :—whence the arc EDF is constant, and therefore its

chord EF.
30. Construct the figure, and let the circle with center O, described

on AH as a diameter, intersect the given circle in P, Q, join OP, PE, and
prove EP at right angles to OP.

31. If the tangent be required to be perpendicular to a given line:

draw the diameter parallel to this line, and the tangent drawn at the ex-

tremity of this diameter will be perpendicular to the given line.

32. The straight line which joins the center and passes through the
intersection of two tangents to a circle, bisects the angle contained by
the tangents.
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33. Draw two radii containing an angle equal to the supplement of
the given angle ; the tangents drawn at the extremities of these radii will

contain the given angle.

34. Since the circle is to touch two parallel lines drawn from two
given points in a third line, the radius of the circle is determined by the
distance between the two given points.

35. It is sufficient to suggest that the angle between a chord and a
tangent is equal to the angle in the alternate segment of the circle. Euc.
in. 32.

36. Let AB be the given chord of the circle whose center is O. Draw
DE touching the circle at any point E and equal to the given line

; join

DO, and with center O and radius DO describe a circle: produce the
chord AB to meet the circumference of this circle in E : then F is the
point required.

37. Let D be the point required in the diameter BA produced, such
that the tangent DP is half of DB. Join CP, C being the center. Then
CPD is a right-angled triangle, having the sum of the base PC and hypo-
tenuse CD double of the perpendicular PD.

38. If BE intersect DE in K (fig. Euc. m. 37). Join FB, FE, then
by means of the triangles, BE is shewn to be bisected in K at right angles.

39. Let AB, CD be any two diameters of a circle, O the center, and
let the tangents at their extremities form the quadrilateral figure EFGH.
Join EO, OF, thcnEO and OF may be proved to be in the same straight

line, and similarly HO, OK.
Note.—This Proposition is equally true if AB, CD be any two chords

whatever. It then becomes equivalent to the following proposition :

—

The diagonals of the circumscribed and inscribed quadrilaterals, intersect

in the same point, the points of contact of the former being the angles of

the latter figure.

40. Let C be the point without the circle from which the tangents

CA, CB are drawn, and let DE be any diameter, also let AE, BD be
joined, intersecting in P, then if CP be joined and produced to meet DE
in G : CG is perpendicular to DE. Join DA, EB, and produce them to

meet in F.
Then the angles DAE, EBD being angles in a semicircle, are right

angles ; or DB, EA are drawn perpendicular to the sides of the triangle

DEF : whence the line drawn from F through P is perpendicular to the

third side DE.
41. Let the chord AB, of which P is its middle point, be produced

both ways to C, D, so that AC is equal to BD. From C, D, draw the

tangents to the circle forming the tangential quadrilateral CKDR, the

points of contact of the sides, being E, H, F, G. Let O be the center of

the circle. Join EH, GF, CO, GO, FO, DO. Then EH and GF may
be proved each parallel to CD, they are therefore parallel to one another.

Whence is proved that both EF and DG bisect AB.
42. This is obvious from Euc. l. 29, and the note to in. 22. p. 156.

43. From any point A in the circumference, let any chord AB and
tangent AC be drawn. Bisect the arc AB in D, and from D draw DE,
DC perpendiculars on the chord AB and tangent AC. Join AD, the

triangles ADE, ADC may be shewn to be equal.

44. Let A, B, be the given points. Join AB, and upon it describe a

segment of a circle which shall contain an angle equal to the given angle.

If the circle cut the given line, there will be two points; if it only touch

the line, there will be one \ and if it neither cut nor touch the line, the

problem is impossible.
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45. It may be shewn that the point required is determined by a per-

pendicular drawn from the center of the circle on the given line.

46. Let two lines AP, BP be drawn from the given points A, B,
making equal angles with the tangent to the circle at the point of contact
P, take any other point Q in the convex circumference, and join QA,
QB : then by Prob. 4, p. 71, and Euc. 1. 21.

47. Let C be the center of the circle, and E the point of contact of

DF with the circle. Join DC, CE, CF.
48. Let the tangents at E, F meet in a point Pv. Produce PvE, RF

to meet the diameter AB produced in S, T. Then RST is a triangle,

and the quadrilateral PvFOE maybe circumscribed by a circle, and RPO
may be proved to be one of the diagonals.

49. Let C be the middle point of the chord of contact : produce AC,
BC to meet the circumference in B', A', and join AA', BB'.

50. Let A be the given point, and B the given point in the given line

CD. At B draw BE at right angles to CD, join AB and bisect it in F,
and from F draw FE perpendicular to AB and meeting BE in E. E is

the center of the required circle.

51. Let O be the center of the given circle. Draw OA perpendicular
to the given straight line ; at O in OA make the angle AOP equal to the

given angle, produce PO to meet the circumference again in Q. Then P,

Q are two points from which tangents may be drawn fulfilling the re-

quired condition.

52. Let C be the center of the given circle, B the given point in the
circumference, and A the other given point through which the required
circle is to be made to pass. Join CB, the center of the circle is a point

in CB produced. The center itself may be found in three ways.
53. Euc. in. 11 suggests the construction.

54. Let AB, AC be the two given lines which meet at A. and let D
be the given point. Bisect the angle BAC by AE, the center of the circle

is in AE. Through D draw DF perpendicular to AE, and produce DF
to G, making FG equal to FD. Then DG is a chord of the circle, and
the circle which passes through D and touches AB, will also pass through
G and touch AC.

55. As the center is given, the line joining this point and center oi

the given circle, is perpendicular to that diameter, through the extremi-

ties of which the required circle is to pass.

56. Let AB be the given line and D the given point in it, through
which the circle is required to pass, and AC the line which the circle i-'

to touch. From D draw DE perpendicular to AB and meeting AC in C.

Suppose O a point in AD to be the centre of the required circle. Draw
OE perpendicular to AC, and join OC, then it may be shown that CO
bisects the angle ACD.

57. Let the given circle be described. Draw a line through the

center and intersection of the two lines. Next draw a chord perpendi-
cular to this line, cutting off a segment containing the given angle. The
circle described passing through one extremity of the chord and touch-

ing one of the straight lines, shall also pass through the other extremity
of the chord and touch the other line.

58. The line drawn through the point of intersection of the two
circles parallel to the line which joins their centers, may be shewn to be

double of the line which joins their centers, and greater than any other

straight line drawn through the same point and terminated by the cir

cumferences. The greatest line therefore depends on the distance be

tween tfc<a centers oi the two circles.
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59. Apply Euc. in. 27. i. 6.

60. Let two unequal circles cut one another, and let the line ABC
draAvn through B, one of the points of intersection, be the line required,

such that AB is equal to BC. Join O, O' the centers of the circles, and
draw OP, O'P' perpendiculars on ABC, then PB is equal to BP' ; through
O' draw O D parallel to PP' ; then ODO' is a right-angled triangle, and
a semicircle described on 00' as a diameter will pass through the point
D. Hence the synthesis. If the line ABC be supposed to move round
the point B and its extremities A, C to be in the extremities of the two
circles, it is manifest that ABC admits of a maximum.

61. Suppose the thing done, then it will appear that the line joining

the points of intersection of the two circles is bisected at right angles by
the line joining the centers of the circles. Since the radii are known,
the centers of the two circles may be determined.

62. Let the circles intersect in A, B ; and let CAD, EBF be any
parallels passing through A, B and intercepted by the circles. Join
CE, AB, DP. Then the figure CEFD may be proved to be a parallelo-

gram. Whence CAD is equal to EBF.
63. Complete the circle whose segment is ADB ; AHB being the

other part. Then since the angle ACB is constant, being in a given
segment, the sum of the arcs DE and AHB is constant. But AHB is

given, hence ED is also given and therefore constant.

64. From A suppose ACD drawn, so that when BD, BC are joined,

AD and DB shall together be double of AC and CB together. Then
the angles ACD, ADB are supplementary, and hence the angles BCD,
BDC are equal, and the triangle BCD is isosceles. Also the angles

BCD, BDC are given, hence the triangle BDC is given in species.

Again AD + DB = 2.AC + 2.BC, or CD = AC + BC.
Whence, make the triangle bde having its angles at d, c equal to that

in the segment BDA ; and make ca = cd — cb, and join ab. At A make
the angle BAD equal to bad, and AD is the line required.

6-5. The line drawn from the point of intersection of the two lines

to. the center of the given circle may be shewn to be constant, and the
center of the given circle is a fixed point.

66. This is at once obvious from Euc. in. 36.

67. This follows directly from Euc. in. 36.

65. Each of the lines CE, DF may be proved parallel to the common
chord AB.

69. By constructing the figure and joining AC and AD, by Euc.
in. 27, it may be proved that the line BC falls on BD.

70. By constructing the figure and applying Euc i. 8, 4, the truth
is manifest.

71. The bisecting line is a common chord to the two circles
;
join the

other extremities of the chord and the diameter in each circle, and the

angles in the two segments mav be proved to be equal.
'72. Apply Euc. iti. 27 ; i. 32, 6.

73. Draw a common tangent at C the point of contact of the circles,

and prove AC and CB to be in the same straight line.

74. Let A, B, be the centers, and C the point of contact of the two
circles ; D, E the points of contact of the circles with the common tangent
1)E, and CF a tangent common to the two circles at C, meeting DF in E.
Join DC, CE. Then DF, FC, FE may be shewn to be equal, and FC
Ui be at right angles to AB.

75. The line must be drawn to the extremities of tho diameters which
•ue on opposite sides of the line joinins: the centers.
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76. The sum of the distances of the center of the third circle from
the centers of the two given circles, is equal to the sum of the radii of
the given circles, which is constant.

77. Let the circles touch at C either externally or internally, and
their diameters AC, BC through the point of contact will either coincide

or be in the same straight line. CDE any line through C will cut off

similar segments from the two circles. For joining AD, BE, the angles

m the segments DAC, EBC are proved to be equal.

The remaining segments are also similar, since they contain angles
which are supplementary to the angles DAC, EBC.

78. Let the line which joins the centers of the two circles be pro-
duced to meet the circumferences, and let the extremities of this line

and any other line from the point of contact be joined. From the center
of the larger circle draw perpendiculars on the sides of the right-angled

triangle inscribed within it.

79. In general, the locus of a point in the circumference of a circle

which rolls within the circumference of another, is a curve called the
Hypocycloid ; but to this there is one exception, in which the radius of

one of the circles is double that of the other: in this case, the locus is

a straight line, as may be easily shewn from the figure.

80. Let A, B be the centers of the circles. Draw AB cutting the
circumferences in C, D. On AB take CE, DF each equal to the radius

of the required circle : the two circles described with centers A, B, and
radii AE, BF, respectively, will cut one another, and the point of inter-

section will be the center of the required circle.

81. Apply Euc. in. 31.

82. Apply Euc. m. 21.

83. (1) When the tangent is on the same side of the two circles.

Join C, C their centers, and on CC describe a semicircle. With center

C and radius equal to the difference ofthe radii of the two circles, describe
another circle cutting the semicircle in D : join DC and produce it to
meet the circumference of the given circle in B. Through C draw CA
parallel to DB and join BA ; this line touches the two circles.

(2) When the tangent is on the alternate sides. Having joined C,
C ; on CC describe a semicircle ; with center C, and radius equal to the
sum of the radii of the two circles describe another circle cutting the
semicircle in D, join CD cutting the circumference in A, through C
draw CB parallel to CA and join AB.

84. The possibility is obvious. The point of bisection of the segment
intercepted between the convex circumferences will be the center of one
of the circles : and the center of a second circle will be found to be the
point of intersection of two circles described from the centers of the
given circles with then' radii increased by the radius of the second circle.

The line passing through the centers of these two circles will be the locus
of the centers of all the circles which touch the two given circles.

85. At any points P, R in the circumferences of the circles, whose
centers are A, B, draw PQ, K,S> tangents equal to the given lines, and
join AQ, BS. These being made the sides of a triangle of which AB
is the base, the vertex of the triangle is the point required.

86. In each circle draw a chord of the given length, describe circles

concentric with the given circles touching these chords, and then draw
a straight line touching these circles.

87. Within one of the circles draw a chord cutting off a segment
equal to the given segment, and describe a concentric circle touching
the chord : then draw a straight line touching this latter circle and th©
other given circle.
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S3. The tangent may intersect tlie liae joining the centers, or the line

produced. Frove that the angle in the segment of one circle is equal to
the angle in the corresponding segment of the other circle.

89. Join the centers A, B ; at C the point of contact draw a tangent,
and at A draAV AF cutting the tangent in F, and making with CF an
angle equal to one-fourth of the given angle. From F draw tangents
to the circles.

90. Let C be the center of the given circle, and D the given point in

the given line AB. At D draw any lino DE at right angles to AB, then
the center of the circle required is in the line AE. Through C draw a
diameter FG parallel to DE, the circle described passing through the
points E, F, G will be the circle required.

91. Apply Euc. in. 18.

_
92. Let A, B, be the two given points, and C the center of the given

circle. Join AC, and at C draw the diameter DCE perpendicular to AC,
and through the points A, D, E describe a circle, and produce AC to
meet the circumference in F. Bisect AF in G, and AB in H, and draw
GK, HK, perpendiculars to AF, AB respectively and intersecting in K.
Then K is the center of the circle which passes through the points A, B,
and bisects the circumference of the circle whose center is C.

93. Let D be the given point and EF the given straight line. (fig.

Euc. in. 32.) Draw DB to make the angle DBF equal to that contained
in the alternate segment. Draw BA at right angles to EF, and DA at
riglrt angles to DB and meeting BA in A. Then AB is the diameter of

the circle.

94. Let A, B be the given points, and CD the given line. From E
the middle of the line AB, draw EM perpendicular to AB, meeting CD
in M, and draw MA. In EM take any point F ; draw FH to make the
given angle with CD ; and draw FG equal to FH, and meeting MA
produced in G. Through A draw AP parallel to FG, and CPK parallel

to FH. Then P is the center, and C the third defining point of the
circle required: and AP may be proved equal to CP by means of the
triangles GMF, AMP ; and HMF, CMP, Euc. vi. 2. Also CPK the
diameter makes with CD the angle KCD equal to FHD, that is, to the
given angle.

95. Let A, B be the two given points, join AB and bisect AB in C,

and draw CD perpendicular to AB, then the center of the required circle

will be in CD. From the center of the given circle draw CFG parallel

to CD, and meeting the circle in F and AB produced in G. At F draw
a chord FF' equal to the given chord. Then the circle which passes

through the points at B and F, passes also through F'.

96. Let the straight line joining the centers of the two circles be
produced both ways to meet the circumference of the exterior circle.

97. Let A be the common center of two circles, and BCDE the chord

such that BE is double of CD. From A, B draw AF, BG perpendicular

to BE. Join AC, and produce it to meet BG in G. Then AC may be
shewn to be equal to CG, and the angle CBG being a right angle, is the

angle in the semicircle described on CG as its diameter.

98. The lines joining the common center and the extremities of the

chords of the circles, may be shewn to contain unequal angles, and the

angles at the centers of the circles are double the angles at the circum-

ferences, it follows that the segments containing these unequal angles

are not similar.

99. Let AB, AC be the straight lines drawn from A, a point in
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the outer circle to touch the inner circle in the points D, E, and meet
the outer circle again at B, C. Join BC, DE. Prove BC double of DE.

Let O be the center, and draw the common diameter AOG inter-

secting BC in F, and join EE. Tnen the figure DBFE may be proved

to be a parallelogram.

100. This appears from Euc. in. 14.

101. The given point may be either within or without the circle.

Draw a chord in the circle equal to the given chord, and describe a

concentric circle touching the chord, and through the given point draw
a line touching this latter circle.

102. The diameter of the inner circle must not be less than one- third

of the diameter of the exterior circle.

103. Suppose AD, DB to be the tangents to the circle AEB contain-

ing the given angle. Draw DC to the center C and join CA, CB.
Then the triangles ACD, BCD are always equal : DC bisects the given

angle at D and the angle ACB. The angles CAB, CBD, being right

angles, are constant, and the angles ADC, BDC are constant, as also the

angles ACD, BCD ; also AC, CB the radii of the given circle. Hence
the locus ofD is a circle Avhose center is C and radius CD.

104. Let C be the center of the inner circle ; draw any radius CD,
at D draw a tangent CE equal to CD, join CE, and with center C and
radius CE describe a circle and produce ED to meet the circle again in F.

105. Take C the center of the given circle, and draw any radius CD,
at D draw DE perpendicular to DC and equal to the length of the re-

quired tangent ; with center C and radius CE describe a circle.

106. This is manifest from Euc. in. 36.

107. Let AB, AC be the sides of a triangle ABC. Erom A draw
the perpendicular AD on the opposite side, or opposite side produced,
^.'he semicircles described on AB, BC both pass through D. Euc. in. 31.

108. Let A be the right angle of the triangle ABC, the first property
follows from the preceding Theorem 107. Let DE, DF be drawn to E,
F the centers of the circles on AB, AC and join EF. Then ED may
be proved to be perpendicular to the radius DF of the circle on AC at

the point D.
109. Let ABC be a triangle, and let the arcs be described on the

Bides externally containing angles, whose sum is equal to two right angles.

It is obvious that the sum of the angles in the remaining segments is

equal to four right angles. These arcs may be shewn to intersect each
other in one point D. Let a, b, c be the centers of the circles on BC,
AC, AB. Join ab, be, ca ; Ah, bC, Ca; aB, Be, cA ; £D, cD, aD. Then
the angle cba may be proved equal to one-half of the angle A6C.
Similarly, the other two angles of abc.

110. It may be remarked, that generally, the mode of proof by which,
in pure geometry, three lines must, under specified conditions, pass
through the same point, is that by reductio ad absurdum. This will for

the most part require the converse theorem to be first proved or taken
for granted.

The converse theorem in this instance is, "If two perpendiculars
drawn from two angles of a triangle upon the opposite sides, intersect

in a point, the line drawn from the third angle through this point
will be perpendicular to the third side."

The proof will be formally thus : Let EHD be the triangle, AC,
BD two perpendiculars intersecting in F. If the third perpendicular
EG do not pass through F, let it take some other position as EH ; and
through F draw EFG to meet AD in G. Then it has been proved that
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EG is perpendicular to AD : whence the two angles EHG, EGH of the
triangle EGH are equal to two right angles :—which is absurd.

111. The circle described on AB as a diameter will pass through
E and D. Then Euc. in. 36.

112. Since all the triangles are on the same base and have equal
vertical angles, these angles are in the same segment of a given circle.

The lines bisecting the vertical angles may be shewn to pass through
the extremity of that diameter which bisects the base.

113. Let AC be the common base of the triangles, ABC the isosceles

triangle, and ADC any other triangle on the same base AC and be-
tween the same parallels AC, BD. Describe a circle about ABC, and
let it cut AD in E and join EC. Then, Euc. i. 17, in. 21.

114. Let ABC be the given isosceles triangle having the vertical

angle at C, and let FG be any given line. Required to find a point P
in FG such that the distance PA shall be double of PC. Divide AC
in D so that AD is double of DC, produce AC to E and make AE double
of AC. On DE describe a circle cutting FG in P, then PA is double
of PC. This is found by shewing that AP 2 = 4 . PC2

.

115. On any two sides of the triangle, describe segments of circles

each containing an angle equal to two-thirds of a right angle, the point
of intersection of the arcs within the triangle will be the point required,

such that three lines drawn from it to the angles of the triangle shall

contain equal angles. Euc. in. 22.

116. Let A be the base of the tower, AB its- altitude, BC the height
of the flagstaff, AD a horizontal line drawn from A. If a circle be des-

cribed passing through the points B, C, and touching the line AD in

the point E : E will be the point required. Give the analysis.

117. If the ladder be supposed to be raised in a vertical plane, the

locus of the middle point may be shewn to be a quadrantai arc of which
the radius is half the length of the ladder.

118. The line drawn perpendicular to the diameter from the other

extremity of the tangent is parallel to the tangent drawn at the extremity
of the diameter.

119. Apply Euc. in. 21.

120. Let A, B, C, be the centers of the three equal circles, and let

them intersect one another in the point D : and let the circles whose
centers are A, B intersect each other again in E ; the circles whose cen-

ters are B, C in F ; and the circles whose centers are C, A in G. Then
FG is perpendicular to DE ; DG to FC ; and DF to GE. Since the

circles are equal, and all pass through the same point D, the centers A,
B, C are in a circle about D whose radius is the same as the radius of

the given circles. Join AB, BC, CA ; then these will be perpendicular

to the chords DE, DF, DG. Again, the figures DAGC, DBFC, are

equilateral, . and hence FG is parallel to AB ; that is, perpendicular to

DE. Similarly for the other two cases.

121. Let E be the center of the circle which touches the two equal

circles whose centers are A, B. Join AE, BE which pass through the

points of contact F, G. Whence AE is equal to EB. Also CD the

common chord bisects AB at right angles, and therefore the perpen-

dicular from E on AB coincides with CD.
122. Let three circles touch each other at the point A, and from A

let a line ABCD be drawn cutting the circumferences in B, C, D. Let

O, O', O" be the centers of the circles, join BO, CO', DO", these lines

are parallel to one another. Euc. i. 5. 28.

123. Proceed as in Theorem 110, supra.
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124. The three tangents will be found to be perpendicular to the

sides of the triangle formed by joining the centers of the three circles.

125. With center A and any radius less than the radius of either of

the equal circles, describe the third circle intersecting them in C and D.
Join BC, CD, and prove BC and CD to be in the same straight line.

126. Let ABC be the triangle required ; BC the given base, BD the
given difference of the sides, and BAG the given vertical angle. Join
CD and draw AM perpendicular to CD. Then MAD is half the vertical

angle and AMD a right angle : the angle BDC is therefore given, and
hence D is a point in the arc of a given segment on BC. Also since BD
is given, the point D is given, and therefore the sides BA, AC are given.

Hence the synthesis.

127. Let ABC be the required triangle, AD the line bisecting the
vertical angle and dividing the base BC into the segments BD, DC.
About the triangle ABC describe a circle and produce AD to meet the
circumference in E, then the arcs BE, EC are equal.

128. Analysis. Let ABC be the triangle, and let the circle ABC be
described about it : draw AF to bisect the vertical angle BAC and meet
the circle in F, make AV equal to AC, and draw CV to meet the circle

in T ;
join TB and TF, cutting AB in D ; draw the diameter FS cutting

BC in R, DR cutting AF in E
;
join AS, and draw AK, AH perpen-

dicular to FS and BC. Then shew that AD is half the sum, and DB
half the difference of the sides AB, AC. Next, that the point F in which
AF meets the circumscribing circle is given, also the point E where DE
meets AF is given. The points A, K, R, E are in a circle, Euc. in. 22.

Hence, KF .FR = AF . FE, a given rectangle; and the segment KR,
which is equal to the perpendicular AH, being given, RF itself is given.
Whence the construction.

129. On AB the given base describe a circle such that the segment
AEB shall contain an angle equal to the given vertical angle of the tri-

angle. Draw the diameter EMD cutting AB in M at right angles. At
D in ED, make the angle EDC equal to half the given difference of the
angles at the base, and let DC meet the circumference ofthe circle in C.
Join CA, CB ; ABC is the triangle required. For, make CF equal to

CB, and join FB cutting CD in G.
130. Let ABC be the triangle, AD the perpendicular on BC. With

center A, and AC the less side as radius, describe a circle cutting the
base BC in E, and the longer side AB in Gr, and BA produced in F, and
join AE, EG, FC. Then the angle GFC being half the given angle,

BAC is given, and the angle BEG- equal to GFC is also given. Like-
wise BE the difference of the segments of the base, and BG the difference

of the sides, are given by the problem. Wherefore the triangle BEG is

given (with two solutions). Again, the angle EGB being given, the
angle AGE, and hence its equal AEG is given ; and hence the vertex A
is given, and likewise the line AE equal to AC the shortest side is given.

Hence the construction.

131. Let ABC be the triangle, D, E the bisections of the sides AC,
AB. Join CE, BD intersecting in F. BisectBD in G and join EG. Then
EF, one-third of EC is given, and BG one-half of BD is also given.

Now EG is parallel to AC ; and the angle BAC being given, its equal
opposite angle BEG is also given. Whence the segment of the circle

containing the angle BEG is also given. Hence F is a given point, and
FE a given line, whence E is in the circumference of the given circle

about F whose radius is FE. Wherefore E being in two given circles, it

is itself their given intersection.
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132. Of all triangles on the same base and having equal vertical

angles, that triangle will be the greatest whose perpendicular from the

vertex on the base is a maximum, and the greatest perpendicular is that

which bisects the base. Whence the triangle is isosceles.

133. Let AB be the given base and ABC the sum of the other two
sides ; at B draw BD at right angles to AB and equal to the given alti-

tude, produce BD to E making DE equal to BD. With center A and
with radius AC describe the circle CFG, draw FO at right angles to BE
and find in it the center of the circle which passes through B and E
and touches the former circle in the point F. The centers A, being

joined and the line produced, will pass through F. Join OB. Then
AOB is the triangle required.

134. Since the area and bases of the triangle are given, the altitude

is given. Hence the problem is—given the base, the vertical angle and
the altitude, describe the triangle.

135. Apply Euc. m. 27.

136. The fixed point may be proved to be the center of the circle.

137. Let the line which bisects any angle BAD of the quadrilateral,

meet the circumference in E, join EC, and prove that the angle made by
producing DC is bisected by EC.

138. Draw the diagonals of the quadrilateral, and by Euc. in. 21 , i. 29.

139. From the center draw lines to the angles : then Euc. in. 27.

140. The centers of the four circles are determined by the intersec-

tion of the lines which bisect the four angles of the given quadrilateral.

Join these four points, and the opposite angles of the quadrilateral so

formed are respectively equal to two right angles.

141

.

Let ABCD be the required trapezium inscribed in the given circle

(fig. Euc. in. 22.) of which AB is given, also the sum of the remaining
three sides and the angle ADC. Since the angle ADC is given, the

opposite angle ABC is known, and therefore the point C and the side

BC. Produce AD and make DE equal to DC and join EC. Since the
sum of AD, DC, CB is given, and DC is known, therefore the sum of

AD, DC is given, and likewise AC, and the angle ADC. Also the angle

DEC being half of the angle ADC is given. Whence the segment of the

circle which contains AEC is given, also AE is given, and hence the

point E, and consequently the point D. Whence the construction.

142. Let ADBC be the inscribed quadrilateral ; let AC, BD pro-

duced meet in 0, and AB, CD produced meet in P, also let the tangents

from 0, P meet the circles in K, H respectively. Join OP, and about
the triangle PAC describe a circle cutting PO in G and join AG. Then
A, B, G, may be shewn to be points in the circumference of a circle.

Whence the sum of the squares on OH and PK may be found by Euc
in. 36, and shewn to be equal to the square on OP.

143. This will be manifest from the equality of the two tangents

drawn to a circle from the same point.

144. Apply Euc. in. 22.

145. A circle can be described about the figure AECBF.
146. Apply Euc. III. 22, 32.

147. Apply Euc. in. 21, 22, 32.

148. Apply Eac. ni. 20, and the angle BAD will be found to be
double of th« angles CBD and CDB together.

149. Let ABCD be the given quadrilateral figure, and let the angles

at A, B, C, D be bisected by four lines, so that the lines which bisect the

angles A and B, B and C, C and D, D and A, meet in the points a, b, c, d,

respectively. Prove that the angles at o and c, or at b and d
f
are to-

gether equal to two right angles.
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150. Apply Euc. in. 22.

151. Join the center of the circle with the other extremity of the line

perpendicular to the diameter.

152. Let AB be a chord parallel to the diameter FG of the circle,

fig. Theo. 1, p. 160, and H any point in the diameter. Let HA and HB
be joined. Bisect FG in O, draw OL perpendicular to FG cutting AB
in K, and join HK, HL, OA. Then the square on HA and HF may be
proved equal to the squares on FH, HG by Theo. 3, p. 114 ; Euc. l. 47;

Euc. ii. 9.

153. Let A be the given point (fig. Euc. in. 36, Cor.) and suppose
AFC meeting the circle in F. C, to be bisected in F, and let AD be a

tangent drawn from A. Then 2. AF2 = AF . AC = AD3
, but AD is

given, hence also AF is given. To construct. Draw the tangent AD.
On AD describe a semicircle AGD, bisect it in G ; with center A and
radius AG, describe a circle cutting the given circle in F. Join AF and
produce it to meet the circumference again in C.

154. Let the chords AB, CD intersect each other in E at right

angles. Find F the center, and draw the diameters HEFG, AFK and
join AC, CK, BD. Then by Euc. n. 4. 5 ; in. 35.

155. Let E, F be the points in the diameter AB equidistant from the

center O ; CED any chord; draw OG perpendicular to CED, and join

FG, OC. The sum of the squares on DF and FC may be shewn to be
equal to twice the square on FE and the rectangle contained by AE, EB
by Euc. i. 47 ; ii. 5 ; in. 35.

156. Let the chords AB, AC be drawn from the point A, and let a

chord FG parallel to the tangent at A be drawn intersecting the chords
AB, AC in D and E, and join BC. Then the opposite angles of the
quadrilateral BDEC are equal to two right angles, and a circle would
circumscribe the figure. Hence by Euc. i. 36.

157. Let the lines be drawn as directed in the enunciation. Draw
the diameter AE and join CE, DE, BE ; then AC2+AD* and 2 . AB*
may be each shewn to be equal to the square on the diameter.

158. Let QOP cut the diameter AB in O. From C the center draw
CH perpendicular to QP. Then CH is equal to OH, and by Euc. n. 9,

the squares on PO, OQ are readily shewn to be equal to twice the square
onCP.

159. From P draw PQ perpendicular on AB meeting it in Q. Join
AC, CD, DB. Then circles would circumscribe the quadrilaterals ACPQ
and BDPQ, and then by Euc. in. 36.

160,. Describe the figure according to the enunciation ; draw AE the
diameter of the circle, and let P be the intersection of the diagonals ofthe
parallelogram. Draw EB, EP, EC, EF, EG, EH. Since AE is a

diameter of the circle, the angles at F, G, H, are right angles, and EF,
EG, EH are perpendiculars from the vertex upon the bases of the tri-

angles EAB, EAC, EAP. Whence by Euc. n. 1 3, and theorem 3, page
114, the truth of the property may be shewn.

161. IfFA be the given line (fig. Euc. ii. 11), and if FA be produced
to C ; AC is the part produced which satisfies the required conditions.

162. LetAD meet the circle in G, II, and join BG, GC. ThenBGC
is a right-angled triangle and GD is perpendicular to the hypotenuse,
and the rectangles may be each shewn to be equal to the square on BG.
Euc. in. 35 ; n. 5 ; i. 47. Or, if EC be joined, the quadrilateral

figure ADCE may be circumscribed by a circle. Euc. in. 31, 22, 36, Cor.
163. On PC describe a semicircle cutting the given one in E, and

dv'4^' EF perpendicular to AD ; then F is the point required.
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164. Let AB be the given straight line. Bisect AB in C and on AB
as a diameter describe a circle ; and at any point D in the circumference,

draw a tangent DE equal to a side of the given square ;
join DC, EC,

and with center C and radius CE describe a circle cutting AB produced
in E. From E draw EG to touch the circle whose center is C in

the point G-.

165. Let AD, DF be two lines at right angles to each other, O the

centre of the circle BFQ ; A any point in AD from which tangents AB,
AC are drawn ; then the chord BC shall always cut ED in the same
point P, wherever the point A is taken in AD. Join AP ; then BAC is

an isosceles triangle,

and FD . DE + AD 3 = AB 2 = BP . PC + AP 2 = BP . PC + AD 2 + DP 2

,

wherefore BP . PC = ED . DE - DP-.
The point P, therefore, is independent of the position of the point A ; and
is consequently the same for all positions of A in the line AD.

166. The point E will be found to be that point in BC, from which
two tangents to the circles described on AB and CD as diameters, are

equal, Euc. in. 36.

167. If AQ, A'P' be produced to meet, these lines with AA' form a

right-angled triangle, then Euc. i. 47.

GEOMETRICAL EXERCISES ON BOOK IV.

HINTS, &c.

1. Let AB be the given line. Draw through C the center of the

given circle the diameter DCE. Bisect AB in F and join FC. Through
A, B draw AG, BH parallel to EC and meeting the diarveter in G, H :

at G, H draw GK, HL perpendicular to DE and meeting the circumfer-

ence in the points K, L ;
join KL; then K.L is equa1 and parallel to AB.

2. Trisect the circumference and join the center with the points of

trisection.

3. See Euc. iv. 4, 5.

4,. Let a line be drawn from the third angle to the point of intersec-

tion of the two lines ; and the three distances of this point from the angles

may be shewn to be equal.

5. Let the line AD drawn from the vertex A of the equilateral tri-

angle, cut the base BC, and meet the circumference of the circle in D.
Let DB, DC be joined : AD is equal to DB and DC. If on DA, DE be
taken equal to DB, and BE be joined; BDE may be proved to be an
equilateral triangle, also the triangle ABE may be proved equal to the

triangle CBD.
The other case is when the line does not cut the base.

6. Let a circle be described upon the base of the equilateral triangle,

and let an equilateral triangle be inscribed in the circle. Draw a diameter
from one of the vertices of the inscribed triangle, and join the other ex-
tremity of the diameter with one of the other extremities of the sides of

the inscribed triangle. The side of the inscribed triangle may then be
proved to be equal to the perpendicular in the other triangle.

7. The line joining the points of bisection, is parallel to the base of

the triangle and therefore cuts off an equilateral triangle from the given

triangle. By Euc. in. 21 ; i. 6, the truth of the theorem may be shewn.

8. Let a diameter be drawn from any angle of an equilateral tri-



on Book IV &?§

angle inscribed in a circle to meet the circumference. It may be proved
that the radius is bisected by the opposite side of the triangle.

9. Let ABC be an equilateral triangle inscribed in a circle, and let

AB'C' be an isosceles triangle inscribed in the same circle, having the

same vertex A. Draw the diameter AD intersecting BC in E, and B'C
in E', and let B'C fall below BC. Then AB, BE, and AB', BE', are

respectively the semi-perimeters of the triangles. Draw B'F perpendi-

cular to BC, and cut off AH equal to AB, and join BH. If BF can be
proved to be greater than B'H, the perimeter of ABC is greater than the

perimeter of AB'C. Next let B'C fall above BC.
10. The angles contained in the two segments of the circle, may be

shewn to be equal, then by joining the extremities of the arcs, the two
remaining sides may be shewn to be parallel.

11. It may be shewn that four equal and equilateral triangles will

form an equilateral triangle of the same perimeter as the hexagon, which
is formed by six equal and equilateral triangles.

12. Let the figure be constructed. By drawing the diagonals of the

hexagon, the proof is obvious.

13. By Euc. i. 47, the perpendicular distance from the center of the

circle upon the side of the inscribed hexagon may be found.
14. The alternate sides of the hexagon will fall upon the sides of the

triangle, and each side will be found to be equal to one-third of the side

of the equilateral triangle.

15. A regular duodecagon may be inscribed in a circle by means of

the equilateral triangle and square, or by means of the hexagon. The
area of the duodecagon is three times the square on the radius of the circle,

which is the square on the side of an equilateral triangle inscribed in the
same circle. Theorem 1, p. 196.

16. In general, three straight lines when produced will meet and
form a triangle, except when all three are parallel or two parallel are

intersected by the third. This Problem includes Euc. iv. 5, and all the
cases which arise from producing the sides of the triangle. The circles

described touching a side of a triangle and the other two sides produced,
are called the escribed circles.

17. This is manifest from Euc. in. 21.

18. The point required is the center of the circle which circumscribes
the triangle. See the notes on Euc. in. 20, p. loo.

19. If the perpendiculars meet the three sides of the triangle, the
point is within the triangle, Euc. iv. 4. If the perpendiculars meet the
base and the two sides produced, the point is the center of the escribed

circle.

20. This is manifest from Euc. in. 11, 13,

21. The base BC is intersected by the perpendicular AD, and the
side AC is intersected by the perpendicular BE. From Theorem I. p.
160 ; the arc AF is proved equal to AE, or the arc FE is bisected in A.
In the same manner the arcs FD, DE, may be shewn to be bisected in BC.

22. Let ABC be a triangle, and let D, E be the points where the in-

scribed circle touches the sides AB, AC. Draw BE, CD intersecting
each other in O. Join AO, and produce it to meet BC in F. Then F is

the point where the inscribed circle touches the third side BC. If F be
not the point of contact, let some other point Gr be the point of contact.
Through D draw DH parallel to AC, and DK parallel to BC. By the
similar triangles, CGr may be proved equal to CF, or Gr the point of con-
tact coincides with F, the point where the line drawn from A through
meets BC.
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23. In the figure, Euc. iv. 5. Let AF bisect the angle at A, and be
produced to meet the circumference in G. Join GB, GC and find the
center H of the circle inscribed in the triangle ABC. The lines GH, GB,
GC are equal to one another.

24. Let ABC be any triangle inscribed in a circle, and let the per-

pendiculars AD, BE, CF intersect in G. Produce AD to meet the cir-

cumference in H, and join BH, CH. Then the triangle BHC may be
shewn to be equal in all respects to the triangle BGC, and the circle

which circumscribes one of the triangles will also circumscribe the other.

Similarly may be shewn by producing BE and CF, &c.
25. First. Prove that the perpendiculars Aa, Bbt Cc pass through

the same point O, as Theo. 112, p. 171. Secondly. That the triangles

Acb, ~Bca, Cab are equiangular to ABC. Euc. in. 21. Thirdly. That the
angles of the triangle abc are bisected by the perpendiculars ; and lastly,

by means of Prob. 4, p. 71, that ab + be + ca is a minimum.
26. The equilateral triangle can be proved to be the least triangle

which can be circumscribed about a circle.

27. Through C draw CH parallel to AB and join AH. Then HAC
the difference of the angles at the base is equal to the angle HFC. Euc.
in. 21, and HFC is bisected by FG.

28. LetF, G, (figure, Euc.iv. 5,) be the centers of the circumscribed
and inscribed circles

;
join GF, GA, then the angle GAF which is equal to

the difference of the angles GAD, FAD, may be shewn to be equal to

half the difference of the angles ABC and ACB.
29. This Theorem may be stated more generally, as follows :

Let AB be the base of a triangle, AEB the locus of the vertex ; D the
bisection of the remaining arcADB of the circumscribing circle ; then the
locus of the center of the inscribed circle is another circle whose center is

D and radius DB. For join CD: then P the center of the inscribed

circle is in CD. Join AP, PB ; then these lines bisect the angles CAB,
CBA, and DB, DP, DA may be proved to be equal to one another.

30. Let ABC be a triangle, having C a right angle, and upon AC, BC,
let semicircles be described : bisect the hypotenuse in D, and let fall DE,
DF perpendiculars on AC, BC respectively, and produce them to meet
the circumferences of the semicircles in P, Q ; then DP may be proved
to be equal to DQ.

31. Let the angle BAC be a right angle, fig. Euc. iv. 4. Join AD.
Then Euc. in. 17, note p. ]oo.

32. Suppose the triangle constructed, then it may be shewn that the

difference between the hypotenuse and the sum of the two sides is equal

to the diameter of the inscribed circle.

33. Let P, Q be the middle points of the arcs AB, AC, and let PQ
be joined, cutting AB, AC in DE ; then AD is equal to AE. Find the

center O and join OP, QO.
34. With the given radius of the circumscribed circle, describe a

circle. Draw BC cutting off the segment BAC containing an angle
equal to the given vertical angle. Bisect BC in D, and draw the diame-
ter EDF : join FB, and with center F and radius FB describe a circle:

this will be the locus of the centers of the inscribed circle (see Theorem
33, supra.) On DE take DG equal to the given radius of the inscribed
circle, and through G draw GH parallel to BC, and meeting the locus of

the centers in H. H is the center of the inscribed circle. ^

35. This may readily be effected in almost a similar way to the pre-

ceding Problem.
36. With the given radius describe a circle, then by Euc. hi, 34.
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37. Let ABC be a triangle on the given base BC ana naving its ver-

tical angle A equal to the given angle. Then since the angle at A is

constant, A is a point in the arc of a segment of a circle described on BC.
Let D be the center of the circle inscribed in the triangle ABC. Join
DA, DB, DC : then the angles at B, C, A, are bisected. Euc. rv. 4.

Also since the angles of each of the triangles ABC, DBC are equal to two
right angles, it follows that the angle BDC is equal to the angle A and
half the sum of the angles B and C. But the sum of the angles B and C
can be found, because A k given. Hence the angle BDC is known, and
therefore D is the locus of the vertex of a triangle described on the base
BC and having its vertical angle at D double of the angle at A.

38. Suppose the parallelogram to be rectangular and inscribed in the
given triangle and to be equal in area to half the triangle : it may be
shewn that the parallelogram is equal to half the altitude of the triangle,

and that there is a restriction to the magnitude of the angle which two
adjacent sides of the parallelogram make with one another.

39. Let ABC be the given triangle, and A'B'C the other triangle, to

the sides of which the inscribed triangle is required to be parallel.

Through any point a in AB draw ab parallel to A'B' one side of the given
triangle and through a, b draw ac, be respectively parallel to AC, BC.
Join Ac and produce it to meet BC in D ; through D draw DE, DF,
parallel to ca, cb, respectively, and join EF. Then DEF is the triangle

required.

40. This point will be found to be the intersection of the diagonals

of the given parallelogram.

41. The difference of the two squares is obviously the sum of the four

triangles at the corners of the exterior square.

42. (1) Let ABCD be the given square : join AC, at A in AC,
make the angles CAE, CAF, each equal to one-third of a right angle, and
join EF.

(2) Bisect AB any side in P, and draw PQ parallel to AD or BC,
then at P make the angles as in the former case.

43. Each of the interior angles of a regular octagon may be shewn to

be equal to three-fourths of two right angles, and the exterior angles

made by producing the sides, are each equal to one fourth of two right

angles, or one-half of a right angle.

44. Let the diagonals of the rhombus be drawn ; the center of the
inscribed circle may be shewn to be the point of their intersection.

45. Let ABCD be the required square. Join O, O' the centers of the

circles and draw the diagonal AEC cutting 00' in E. Then E is the
middle point of 00' and the angle AEO is half a right angle.

46. Let the squares be inscribed in, and circumscribed about a circle,

and let the diameters be drawn, the relation of the two squares is manifest.

47. Let one of the diagonals of the square be drawn, then the isos-

celes right-angled triangle which is half the square, may be proved to be
greater than any other right-angled triangle upon the same hypotenuse.

48. Take half of the side of the square inscribed in the given circle,

this will be equal to a side of the required octagon. At the extremities

on the same side of this line make two angles each equal to three-fourths

of two right angles, bisect these angles by two straight lines, the point
at which they meet will be the center of the circle which circumscribes

the octagon, and either of the bisecting lines is the radius of the circle.

49. First shew the possibility of a circle circumscribing such a figure,

and then determine the center of the circle.

50. By constructing the figures and drawing lines from the center of
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the circle to the angles of the octagon, the areas of the eight triangles

may be easily shewn to be equal to eight times the rectangle contained

by the radius of the circle, and half the side of the inscribed square.

51. Let AB, AC, AD, be the sides of a square, a regular hexagon and
an octagon respectively inscribed in the circle whose center is O. Pro-
duce AC to E making AE equal to AB ; from E draw EF touching the

circle in E, and prove EF to be equal to AD.
52. Let the circle required touch the given circle in P, and the given

line in Q. Let C be the center of the given circle and C that of the re-

quired circle. Join CC, C'Q, QP ; and let QP produced meet the given

circle in R, join R.C and produce it to meet the given line in V. Then
RCV is perpendicular to VQ. Hence the construction.

53. Let A, B be the centers of the given circles and CD the given

straight line. On the side of CD opposite to that on which the circles

are situated, draw a line EF parallel to CD at a distance equal to the

radius of the smaller circle. From A the center of the larger circle de-

scribe a concentric circle GH with radius equal to the difference of the
radii of the two circles. Then the center of the circle touching the
circle GH, the line EF, and passing through the center of the smaller
circle B, may be shewn to be the center of the circle which touches the
circles whose centers are A, B, and the line CD.

54. Let AB, CD be the two lines given in position and E the center
of the given circle. Draw two lines FG, HI parallel to AB, CD respec-

tively and external to them. Describe a circle passing through E and
touching FG, HI. Join the centers E, O, and with center O and radius
equal to the difference of the radii of these circles describe a circle ; this

will be the circle required.

55. Let the circle ACF having the center G, be the required circle

touching the given circle whose center is B, in the point A, and cutting

the other given circle in the point C. Join BG, and through A draw a
line perpendicular to BG ; then this line is a common tangent to the
circles whose centers are B, G. Join AC, GC. Hence the construction.

56. Let C be the given point in the given straight line AB, and D
the center of the given circle. Through C draw a line CE perpendicular
to AB ; on the other side of AB, take CE equal to the radius of the given
circle. Draw ED, and at D make the angle EDE equal to the angle
DEC, and produce EC to meet DF. This gives the construction for one
case, when the given line does not cut or touch the other circle.

57. This is a particular case of the general problem ; To describe a

circle passing through a given point and touching two straight lines

given in position.

Let A be the given point between the two given lines which when
produced meet in the point B. Bisect the angle at B by BD and through
A draw AD perpendicular to BD and produce it to meet the two given
lines in C, E. Take DF equal to DA, and on CB take CG such that the
rectangle contained by CF, CA is equal to the square on CG. The circle

described through the points F, A, G, will be the circle required. De-
duce the particular case when the given lines are at right angles to one
another, and the given point in the line which bisects the angle at B. If

the lines are parallel, when is the solution possible ?

58. Let A, B, be the centers of the given circles, which touch
externally in E ; and let C be the given point in that whose center is B.
Make CD equal to AE and draw AD; make the angle DAG equal to

the angle ADG. ; then G is the center of the circle required, and GO
i$s radius*



ON BOOK IV. 383

59. If the three points be such as when joined by straight lines a

triangle is formed ; the points at which the inscribed circle touches the

sides of the triangle, are the points at which the three circles touch one

another. Euc. iv. 4. Different cases arise from the relative position

of the three points.

60. Bisect the angle contained by the two lines at the point where
the bisecting line meets the circumference, draw a tangent to the circle

and produce the two straight lines to meet it. In this triangle inscribe

a circle.

61. From the given angle draw a line through the center of the circle,

and at the point where the line intersects the circumference, draw a

tangent to the circle, meeting two sides of the triangle. The circle

inscribed within this triangle Avill be the circle required.

62. Let the diagonal AD cut the arc in P, and let O be the center of

the inscribed circle. Draw OQ perpendicular to AB. Draw PE a

tangent at P meeting AB produced in E : then BE is equal to PD. Join
PQ, PB. Then AB may be Droved equal to QE. Hence AQ is equal
to BE or DP.

63. Suppose the center of the required circle to be found, let fall

two perpendiculars from this point upon the radii of the quadrant,
and join the center of the circle with the center of the quadrant and
produce the line to meet the arc of the quadrant. If three tangents be
drawn at the three points thus determined in the two semicircles and
the arc of the quadrant, they form a right-angled triangle which
circumscribes the required circle.

64. Let AB be the base of the given segment, C its middle point.

Let DCE be the required triangle having the sum of the base DE and
perpendicular CF equal to the given line. Produce CF to H making
FH equal to DE. Join HD and produce it, if necessary, to meet AB
produced in K. Then CK is double of DF. Draw DL perpendicular
toCK.

65. From the vertex of the isosceles triangle let fall a perpendicular
on the base. Then, in each of the triangles so formed, inscribe a circle,

Euc. iv. 4 ; next inscribe a circle so as to touch the two circles and the

two equal sides of the triangle. This gives one solution : the problem
is indeterminate.

66. If BD be shewn to subtend an arc of the larger circle equal to

one-tenth of the whole circumference :—then BD is a side of the decagon
in the larger circle. And if the triangle ABD can be shewn to be
inscriptible in the smaller circle, BD wiil be the side of the inscribed

pentagon.
67. It may be shewn that the angles ABF, BFD stand on two arcs,

one of which is three times as large as the other.

68. It may be proved that the diagonals bisect the angles of the
pentagon , and the five-sided figure formed by their intersection, may be
shewn to be both equiangular and equilateral.

69. The figure ABCDE is an irregular pentagon inscribed in a circle ;

it may be shewn that the five angles at the circumference stand upon
arcs whose sum is equal to the whole circumference of the circle ; Euc.
in. 20.

70. If a side CD (figure, Euc. iv. 11) of a regular pentagon be
produced to K, the exterior angle ADK of the inscribed quadrilateral

figure ABCD is equal to the angle ABC, one of the interior angles of the
pentagon. From this $ construction may be made toy the method, of

folding the ribbon,,
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In the figure, Euc. iv. 10, let DC be produeed to meet the circum-
ference in F, and join FB. Then FB is the side of a regular pentagon
inscribed in the larger circle, D is the middle of the arc subtended by
the adjacent side of the pentagon. Then the difference of FD and BD
is equal to the radius AB. Next, it may be shewn, that FD is divided
in the same manner in C as AB, and by Euc. n. 4, 11, the squares on
FD and DB are three times the square on AB, and the rectangle of FD
and DB is equal to the square on AB.

72. If one of the diagonals be drawn, this line with three sides of the
pentagon forms a quadrilateral figure of which three consecutive sides

are equal. The problem is reduced to the inscription of a quadrilateral

in a square.

73. This may be deduced from Euc. iv. 11.

74. The angle at A the center of the circle (fig. Euc. iv. 10.) is one-
tenth of four right angles, the arc BD is therefore one-tenth of the
circumference, and the chord BD is the side of a regular decagon
inscribed in the larger circle. Produce DC to meet the circumference
in F and join BF, then BF is the side of the inscribed pentagon, and AB
is the side of the inscribed hexagon. Join FA. Then FCA may be
proved to be an isosceles triangle and FB is a line drawn from the
vertex meeting the base produced. If a perpendicular be drawn from
F on BC, the difference of the squares on FB, FC may be shewn to be
equal to the rectangle AB, BC, (Euc. i. 47 ; n. o. Cor.) ; or the square
on AC.

75. Divide the circle into three equal sectors, and draw tangents to

the middle points of the arcs, the problem is then reduced to the
inscription of a circle in a triangle.

76. Let the inscribed circles whose centers are A, B touch each
other in G, and the circle whose center is C, in the points D, E

; join

A, D ; A, E ; at D, draw DF perpendicular to DA, and EF to EB,
meeting in F. Let F, G be joined, and FG be proved to touch the two
circles in G whose centers are A and B.

77. The problem is the same as to find how many equal circles may
be placed round a circle of the same radius, touching this circle and
each other. The number is six.

78. This is obvious from Euc. iv. 7, the side of a square circum-
scribing a circle being equal to the diameter of the circle.

79. Each of the vertical angles of the triangles so formed, may be
proved to be equal to the difference between the exterior and interior

angle of the heptagon.
80. Every regular polygon can be divided into equal isosceles tri-

angles by drawing lines from the center of the inscribed or circumscribed
circle to the angular points of the figure, and the number of triangles

will be equal to the number of sides of the polygon. If a perpendicular
FG be let fall from F (figure, Euc. iv. 14) the center on the base CD of

FCD, one of these triangles, and if GF be produced to H till FH be
equal to FG, and HC, HD be joined, an isosceles triangle is formed,
such that the angle at H is half the angle at F. Bisect HC, BD in K,
L, and join KL; then the triangle HKL may be placed round the
vertex H, twice as many times as the triangle CFD round the vertex F.

81. The sum of the arcs on which stand the 1st, 3rd, 5th, &c. anglesr
is equal to the sum of the arcs on which stand the 2nd, 4th, 6th, &c.
angles.

82. The proof of this property depends on the fact, that an isosceles

triangle has a greater area than any scalene triangle ofthe same perimeter.
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6. In the figure Euc. vi. 23, let the parallelograms be supposed to be
rectangular.

Then the rectangle AC : the rectangle DG :: BC : CG, Euc. vi. 1.

and the rectangle DG : the rectangle CF :: CD : EC,
whence the rectangle AC : the rectangle CF : : BC . CD : CG . EC.
In a similar way it may be shewn that the ratio of any two parallelo-

grams is as the ratio compounded of the ratios of their bases and altitudes.

7. Let two sides intersect in O, through O draw POQ parallel to

the base AB. Then by similar triangles, PO may be proved equal to

OQ : and POFA, QOEB, are parallelograms : whence AE is equal
toFB.

8. Apply Euc. vi. 4, v. 7.

9. Let ABC be a scalene triangle, having the vertical angle A, and
suppose ADE an equivalent isosceles triangle, of which the side AD is

equal to AE. Then Euc. vi. 15, 16, AC.AB=AD.AE, or AD*.
Hence AD is a mean proportional between AC, AB. Euc. vi. 8.

10. The lines drawn making equal angles with homologous sides,

divide the triangles into two corresponding pairs of equiangular triangles

;

by Euc. vi. 4, the proportions are evident.
11. By constructing the figure, the angles of the two triangles may

easily be shewn to be respectively equal.

12. A circle may be described about the four-sided figure ABDC.
By Euc. i. 13; Euc. in. 21, 22. The triangles ABC, ACE may be
shewn to be equiangular.

13. Apply Euc. i. 48 ; n. 5. Cor., vi. 16.

14. This property follows as a corollary to Euc. vi. 23 : for the tw&
triangles are respectively the halves of the parallelograms, and are

therefore in the ratio compounded of the ratios of the sides which contain
the same or equal angles : and this ratio is the same as the ratio of the
rectangles by the sides.

15. Let ABC be the given triangle, and let the line EGF cut the
base BC in G. Join AG. Then by Euc. vi. 1, and the preceding
theorem (14) it may be proved that AC is to AB as GE is to GF.

16. The two means and the two extremes form an arithmetic series

of four lines whose successive differences are equal; the difference therefore

between the first and the fourth, or the extremes, is treble the difference

between the first and the second.

17. This may be effected in different ways, one of which is the
following. At one extremity A of the given line AB draw AC making
any acute angle with AB and join BC ; at any point D in BC draw DEfc'

parallel to AC cutting AB in E and such that EF is equal to ED, draw
FC cutting AB in G. Then AB is harmonically divided in E, G.

18. In the figure Euc. vi. 13. If E be the middle point of AC ; then
AE or EC is the arithmetic mean, and DB is the geometric mean, between
AB and BC. If DE be joined and BF be drawn perpendicular on DE

;

then DF may be proved to be the harmonic mean between AB and BC.
19. In the fig. Euc. vi. 13. DB is the geometric mean between AB

and BC, and if AC be bisected in E, AE or EC is the Arithmetic mean.
The next is the same as—To find the segments of the hypotenuse of a

rihgt-angled triangle made by a perpendicular from the right angle,
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having given the difference between half the hypotenuse and the
perpendicular.

20. Let the line DF drawn from D the bisection of the base of the
triangle ABC, meet AB in E, and CA produced in F. Also let AG
drawn parallel to BC from the vertex A, meet DF in G. Then by means
of the similar triangles ; DF, FE, FG, may be shewn to be in harmonic
progression.

21. If a triangle be constructed on AB so that the vertical angle is

bisected by the line drawn to the point 0, By Euc. vi. A, the point
required may be determined.

22. Let DB, DE, DCA be the three straight lines, fig. Euc. in. 37 ;

let the points of contact B, E be joined by the straight line BC cutting

DA in G. Then BDE is an isosceles triangle, and DG is a line from the
vertex to a point G in the base. And two values of the square on BD
may be found, one from Theo. 37, p. 118: Euc. in. 35; n. 2; and
another from Euc. in. 36 ; n. 1. From these may be deduced, that

the rectangle DC, GA, is equal to the rectangle AD, CG. Whence
the, &c.

23. Let ABCD be a square and AC its diagonal. On AC take AE
equal to the side BC or AB : join BE and at E draw EF perpendicular
to AC and meeting BC in F. Then EC, the difference between the
diagonal AC and the side AB of the square, is less than AB ; and CE,
EF, FB may be proved to be equal to one another : also CE, EF are the
adjacent sides of a square whose diagonal is FC. On FC take FG equal
to CE and join EG. Then, as in the first square, the difference CG
between the diagonal FC and the side EC or EF, is less than the side EC.
Hence EC, the difference between the diagonal and the side of the given
square, is contained twice in the side BC with a remainder CG : and CG
is the difference between the side CE and the diagonal CF of another
square. By proceeding in a similar way, CG, the difference between the

diagonal CF and the side CE, is contained twice in the side CE with a

remainder : and the same relations may be shewn to exist between the
difference of the diagonal and the side of every square of the series which
is so constructed. Hence, therefore, as the difference of the side and
diagonal of every square of the series is contained twice in the side with
a remainder, it follows that there is no line which exactly measures the

side and the diagonal of a square.

24. Let the given line AB be divided in C, D. On AD describe a

semicircle, and on CB describe another semicircle intersecting the former
in P ; draw PE perpendicular to AB ; then E is the point required.

25. Let AB be equal to a side of the given square. On AB describe

a semicircle ; at A draw AC perpendicular to AB and equal to a fourth

proportional to AB and the two sides of the given rectangle. Draw CD
parallel to AB meeting the circumference in D. Join AD, BD, which
are the required lines.

26. Let the two given lines meet when produced in A. At A draw
AD perpendicular to AB, and AE to AC, and such that AD is to AE in

the given ratio. Through D, E, draw DF, EF, respectively parallel to

AB, AC and meeting each other in F. Join AF and produce it, and
the perpendiculars drawn from any point of this line on the two given

lines will always be in the given ratio.

27. The angles made by the four lines at the point oftheir divergence,

remain constant. See Note on Euc. vi. A, p. 295.

28. Let AB be the given line from which it is required to cut off a

part BC such that BC shall be a mean proportional between the

remainder AC and another given line. Produce AS to D, making BD
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equal to the other given line. On AD describe a semicircle, at B draw
BE perpendicular to AD. Bisect BD in O, and with center O and
radius OB describe a semicircle, join OE cutting the semicircle on BD
in F, at F draw FC perpendicular to OE and meeting AB in C. C is

the point of division, such that BC is a mean proportional between
AC and BD.

29. Find two squares in the given ratio, and if BF be the given line

(figure, Euc. vi. 4), draw BE at right angles to BF, and take BC, CE
respectively equal to the sides of the squares which are in the given ratio.

Join EF, and draw CA parallel to EF : then BF is divided in A as

required. *

30. Produce one side of the triangle through the vertex and make
the part produced equal to the other side. Bisect this line, and with
the vertex of the triangle as center and radius equal to half the sum of

the sides, describe a circle cutting the base of the triangle.

31. If a circle be described about the given triangle, and another
circle upon the radius drawn from the vertex of the triangle to the center

of the circle, as a diameter, this circle will cut the base in two points, and
give two solutions of the problem. Give the Analysis.

32. This Problem is analogous to the preceding.
33. Apply Euc. vi. 8, Cor. ; 17.

34. Describe a circle about the triangle, and draw the diameter
through the vertex A, draw a line touching the circle at A, and meeting
the base BC produced in D. Then AD shall be a mean proportional
between DC and DB. Euc. in. 36.

35. In BC produced take CE a third proportional to BC and AC;
on CE describe a circle, the center being O ; draw the tangent EF at

E equal to AC ; draw FO cutting the circle in T and T' : and lastly

draw tangents at T, T' meeting BC in P and P'. These points fulfil the
conditions of the problem.

By combining the proportion in the construction with that from the
similar triangles ABC, DBP, and Euc. in. 36, 37 : it may be proved
that CA, PD - CP2

. The demonstration is similar for P'D'.
36. This property may be immediately deduced from Euc. vi. 8, Cor.
37. Let ABC be the triangle, right-angled at C, and let AE on AB

beequal to AC, also let the line bisecting the angle A, meet BC in D.
Join DE. Then the triangles ACD, AED are equal, and the triangles
ACB, DEB equiangular.

38. The segments cut off from the sides are to be measured from the
right angle, and by similar triangles are proved to be equal ; also by
similar triangles, either of them is proved to be a mean proportional
between the remaining segments of the two sides.

39. First prove AC 2
: AD-:: BC : 2. BD then2.AC2

: AD 2 :: BC :BD,
whence 2 .AC2 - AD a

: AD 3
: : BC - BD : BD,

and since 2. AC2 - AD 2 = 2. AC2 - (AC 2 + DC2
) = AC2 - CD2

,

the property is immediately deduced.
40. The construction is suggested by Euc. i. 47, and Euc. vi. 31.
41. See Note Euc. vi. A. p. 295. The bases of the triangles CBI),

ACD, ABC, CDE may be shewn to be respectively equal to DB, 2.BD,
3.BD, 4.BD.

'

42. (1) Let ABC be the triangle which is to be bisected by a line
drawn parallel to the base BC. Describe a semicircle on AB, from the
center D draw DE perpendicular to AB meeting the circumference in
E, join EA, and with center A and radius AE describe a circle cutting
AB in F, the line drawn fron F parallel to BC, bisects the triangle. The

s 2



388 GEOMETRICAL EXERCISES, &C.

proof depends on Euc. vi. 19 ; 20, Cor. 2. (2) Let ABC be the triangle,

BC being the base. Draw AD at right angles to BA meeting the base
produced inD. Bisect BC in E, and on ED describe a semicircle, from
B draw BP to touch the semicircle in P. From BA cut off BF equal
to BP, and from F draw FG perpendicular to BC. The line FG bisects

the triangle. Then it may be proved that BFG : BAD :: BE : BD,
and that BAD : BAC : : BD : BC ; whence it follows that BFG : BAC
: : BE : BC or as 1 : 2.

43. Let ABC be the given triangle which is to be divided into two
parts having a given ratio, by a line parallel to BC. Describe a semi-
circle on AB and divide AB in D in the given ratio ; at D draw DE
perpendicular to AB and meeting the circumference in E ; with center

A and radius AE describe a circle cutting AB in F : the line drawn
through F parallel to BC is the line required. In the same manner
a triangle may be divided into three or more parts having any given ratio

to one another by lines drawn parallel to one of the sides of the triangle.

44. Let these points be taken, one on each side, and straight lines be
drawn to them ; it may then be proved that these points severally bisect

the sides of the triangle.

45. Let ABC be any triangle and D be the given point in BC, from
which lines are to be drawn which shall divide the triangle into any
number (suppose five) equal parts. Divide BC into five equal parts in

E, F, G, H, and draw AE, AF, AG, AH, AD, and through E, F, G, H
draw EL, FM, GN, HO parallel to AD, and join DL, DM, DN, DO

;

these lines divide the triangle into five equal parts.

By a similar process, a triangle may be divided into any number of

parts which have a given ratio to one another.
46. Let ABC be the larger, abc the smaller triangle, it is required to

draw a line DE parallel to AC cutting off the triangle DBE equal to the
triangle abc. On BC take BG equal to be, and on BG describe th«

triangle BGH equal to the triangle abc. Draw HK parallel to BC, join

KG ; then the triangle BGK is equal to the triangle abc. On BA, BC
take BD to BE in the ratio of BA to BC, and such that the rectangle

contained by BD, BE shall be equal to the rectangle contained by BK,
BG. Join DE, then DE is parallel to AC, and the triangle BDE is

equal to abc.

47. Let ABCD be any rectangle, contained by AB, BC,
Then AB 2

: AB . BC : : AB : BC,
andAB.BC: BC 2

: : AB : BC,
whence AB 2

: AB . BC : : AB . BC : BC8
,

or the rectangle contained by two adjacent sides of a rectangle, is a mean
proportional between their squares.

48. In a straight line at any point A, make Ac equal to Ad in the
given ratio. At A draw AB perpendicular to cAd, and equal to a side

of the given square. On cd describe a semicircle cutting AB in b ; and
join be, bd ; from B draw BC parallel to be, and BD parallel to bd : then
AC, AD are the adjacent sides of the rectangle. For, CA is to AD
as cA to Ad, Euc. vi. 2 ; and CA.AD = AB 2

, CBD being a right-angled

triangle.

49. From one of the given points two straight lines are to be drawn
perpendicular, one to each ofany two adjacent sides of the parallelogram

;

and from the other point, two lines perpendicular in the same manner to

each of the two remaining sides. When these four lines are drawn to

intersect one another, the figure so formed may be shewn to be equi-

angular to the given parallelogram.
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50. It is manifest that this is the general case of Prop. 4, p. 197.

If the rectangle to be cut off be two-thirds ofthe given rectangle ABCD.
Produce BC to E so that BE may be equal to a side of that square

which is equal to the rectangle required to be cut off ; in this case, equal
to two-thirds of the rectangle ABCD. On AB take AF equal to AD or

BC; bisect FB in G-, and with center G and radius GE, describe a
semicircle meeting AB, and AB produced, in H and K. On CB take
CL equal to AH and draw HM, LM parallel to the sides, and HBLM
is two-thirds of the rectangle ABCD.

51. Let ABCD be the parallelogram, and CD be cut in P and BC
produced in Q. By means of the similar triangles formed, the property
may be proved.

52. The intersection of the diagonals is the common vertex of two
triangles which have the parallel sides of the trapezium for their bases.

53. Let AB be the given straight line, and C the center of the given
circle; through C draw the diameter DCE perpendicular to AB. Place
in the circle a line FG which has to AB the given ratio ; bisect FG in

H, join CH, and on the diameter DCE, take CK, CL each equal to

CH ; either of the lines drawn through K, L, and parallel to AB is

the line required.

54. Let C be the center of the circle, CA, CB two radii at right angles
to each other ; and let DEFG be the line required which is trisected in

the points E, F. Draw CG perpendicular to DH and produce it to meet
the circumference in K ; draw a tangent to the circle at K : draw CG,
and produce CB, CG to meet the tangent in L, M, then MK may be
shewn to be treble of LK.

55. The triangles ACD, BCE are similar, and CF is a mean propor-
tional between AC and CB.

56. Let any tangent to the circle at E be terminated by AD, BC
tangents at the extremity of the diameter AB. Take O the center of the
circle and join OC, OD, OE ; then ODC is a right-angled triangle and
OE is the perpendicular from the right angle upon the hypotenuse.

57. This problem only differs from problem 59, infra, in having the
given point without the given circle.

58. Let A be the given point in the circumference of the circle, C its

center. Draw the diameter ACB, and produce AB to D, taking AB to

BD in the given ratio : from D draw a line to touch the circle in E,
which is the point required. From A draw AF perpendicular to DE,
and cutting the circle in G.

59. Let A be the given point within the circle whose center is C, and
let BAD be the line required, so that BA is to AD in the given ratio.

Join AC and produce it to meet the circumference in E, F. Then EF
is a diameter. Draw BG, DH perpendicular on EF : then the triangles

BGA, DHA are equiangular. Hence the construction.

60. Through E one extremity of the chord EF, let a line be drawn
parallel to one diameter, and intersecting the other. Then the three
angles of the two triangles may be shewn to be respectively equal to one
another.

6 1

.

Let AB be that diameter of the given circle which when produced
is perpendicular to the given line CD, and let it meet that line in C ; and
let P be the given point : it is required to find D in CD, so that DB
may be equal to the tangent DF. Make BC : CQ :: CQ : CA, and join
PQ ; bisect PQ in E, and draw ED perpendicular to PQ meeting CD in

D ; then D is the point required. Let O be the center of the circle, draw
the tangent DF ; and join OF, OD, QD, PD. Then QD may be shewn
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to be equal to DF and to DP. When P coincides with. Q, any point D
in CD fulfils the conditions of the problem ; that is, there are innume-
rable solutions.

62. It may be proved that the vertices of the two triangles which are

similar in the same segment of a circle, are in the extremities of a chord
parallel to the chord of the given segment.

63. For let the circle be described about the triangle EAC, then by
the converse to Euc. in. 32 ; the truth of the proposition is manifest.

64. Let the figure be constructed, and the similarity of the two tri-

angles will be at once obvious from Euc in. 32. ; Euc. i. 29.

65. In the arc AB (fig. Euc. iv. 2) let any point K be taken, and
from K let KL, KM, KN be drawn perpendicular to AB, AC, BC respec-

tively, produced if necessary, also let LM, LIST be joined, then MLIST may
be shewn to be a straight line. Draw AK, BK, CK, and by Euc. in. 31,

22, 21 ; Euc. I. 14.

6Q. Let AB a chord in a circle be bisected in C, and DE, FG two
chords drawn through C ; also let their extremities DG, FE be joined

intersecting CB in H, and AC in K ; then AK is equal to HB. Through
H draw M.HL parallel to EF meeting FG in M, and DE produced in L.

Then by means of the equiangular triangles, HC may be proved to be
equal to CK, and hence AK is equal to HB.

67. Let A, B be the two given points, and let P be a point in the
locus so that PA, PB being joined, PA is to PB in the given ratio. Join
AB and divide it in C in the given ratio, and join PC. Then PC bisects

the angle APB. Euc. vi. 3. Again, in AB produced, take AD to AB
in the given ratio, join PD and produce AP to E, then PD bisects the
angle BPE. Euc. vi. A. Whence CPD is a right angle, and the point P
lies in the circumference of a circle whose diameter is CD.

68. Let ABC be a triangle, and let the line AD bisecting the vertical

angle A be divided in E, so that BC : BA+ AC :: AE : ED. By Euc.
vi. 3, may be deduced BC : BA-fAC :: AC : AD. Whence may be
proved that CE bisects the angle ACD, and by Euc. iv. 4, that E is the
center of the inscribed circle.

69. By means of Euc. iv. 4, and Euc. vi. C. this theorem may be
shewn to be true.

70. Divide the given base BC in D, so that BD may be to DC in the
ratio of the sides. At B, D draw BB', DC perpendicular to BC and
equal to BD, DC respectively. Join BD' and produce it to meet BC
produced in O. With center and radius OD, describe a circle. From
A any point in the circumference join AB, AC, AO. Prove that AB is

to AC as BD to DC. Or thus. If ABC be one of the triangles. Divide
the base BC in D so that BA is to AC as BD to DC. Produce BC and
take DO to OC as BA to AC : then O is the center of the circle.

71. Let ABC be any triangle, and from A, B let the perpendiculars

AD, BE on the opposite sides intersect in P : and let AF, BG drawn to

F, G the bisections ot the opposite sides, intersect in Q. Also let FR,
GR be drawn perpendicular to BC, AC, and meet in R: then R is the
center of the circumscribed circle. Join PQ, QR ; these are in the
same line.

Join FG, and by the equiangular triangles, GRF, APB, AP is

proved double of FR. And AQ is double of QF, and the alternate

angles PAQ, QFR are equal. Hence the triangles APQ, RFQ are

equiangular.

72. Let C, C be the centers of the two circles, and let CC the line

joining the centers intersect the common tangent PP' in T. .Let the
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line joining the centers cut the circles in Q, Q', and let PQ, P'Q' be
joined ; then PQ is parallel to P'Q'. Join CP, C'P', and then the angle
QPT may be proved to be equal to the alternate angle Q'P'T.

73. Let ABC be the triangle, and BC its base ; let the circles AFB,
AFC be described intersecting the base in the point F, and their

diameters AD, AE, be drawn ; then DA : AE : : BA : AC. For join
DB, DF, EF, EC, the triangles DAB, EAC may be proved to be similar.

74. If the extremities of the diameters of the two circles be joined
by two straight lines, these lines may be proved to intersect at the
point of contact of the two circles; and the two right-angled triangles

thus formed may be shewn to be similar by Euc. in. 34.

75. This follows directly from the similar triangles.

76. Let the figure be constructed as in Theorem 4, p. 162, the tri-

angle EAD being right-angled at A, and let the circle inscribed in the
triangle ADE touch AD, AE, DE in the points K, L, M respectively.

Then AK is equal to AL, each being equal to the radius of the inscribed
circle. Also AB is equal to GC, and AB is half the perimeter of the tri-

angle AED.
Also if GA be joined, the triangle ADE is obviously equal to the

difference of AGDE and the triangle GDE, and this difference may be
proved equal to the rectangle contained by the radii of the other two
circles.

77. From the centers of the two circles let straight lines be drawn
to the extremities of the sides which are opposite to the right angles
in each triangle, and to the points where the circles touch these sides.

Euc. vi. 4.

78. Let A, B be the two given points, and C a point in the circum-
ference of the given circle. Let a circle be described through the points

A, B, C and cutting the circle in another point D. Join CD, AB, and
produce them to meet in E. Let EF be drawn touching the given
circle in F ; the circle described through the points A, B, F, will be
the circle required. Joining AD and CB, by Euc. in. 21, the tri-

angles CEB, AED are equiangular, and by Euc. vi. 4, 16, in. 36, 37,

the given circle and the required circle each touch the line EF in the
same point, and therefore touch one another. When does this solution

fail?

Various cases will arise according to the relative position of the two
points and the circle.

79. Let A be the given point, BC the given straight line, and D the
center of the given circle. Through D draw CD perpendicular to BC,
meeting the circumference in E, F. Join AF, and take FG to the
diameter FE, as FC is to FA. The circle described passing through the
two points A, G and touching the line BC in B is the circle required.

Let H be the center of this circle
;
join HB, and BF cutting the

circumference of the given circle in K, and join EK. Then the tri-

angles FBC, FKE being equiangular, by Euc. vi. 4, 16, and the con-
struction, K is proved to be a point in the circumference of the circle

passing through the points A, G, B. And ifDK, KH be joined, DKH
may be proved to be a straight line :— the straight line which joins the
centers of the two circles, and passes through a common point in their

circumferences.
80. Let A be the given point, B, C the centers of the two given

circles. Let a line drawn through B, C meet the circumferences of
the circles in G, F ; E, D, respectively. In GD produced, take the
point H, so that BH is to CH as the radius of the circle whose center
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is B to the radius of the circle whose center is C. Join AH, and take
KH to DH as GH to AH. Through A, K describe a circle ALK touch-
ing the circle whose center is B, in L. Then M may be proved to be a
point in the circumference of the circle whose center is C. For by join-

ing HL and producing it to meet the circumference of the circle whose
center is B in N ; and joining BN, BL, and drawing CO parallel to BL,
and CM parallel to BN, the line HN is proved to cut the circumference
of the circle whose center is B in M, O ; and CO, CM are radii. By
joining GrL, DM, M may be proved to be a point in the circumference
of the circle ALK. And by producing BL, CM to meet in P, P is

proved to be the center of ALK, and BP joining the centers of the two
circles passes through L the point of contact. Hence also is shewn that
PMC passes through M, the point where the circles whose centers are P
and C touch each other.

Note. If the given point be in the circumference of one of the circles*

the construction may be more simply effected thus :

Let A be in the circumference of the circle whose center is B. Join.

BA, and in AE produced, if necessary, take AD equal to the radius of the
circle whose center is C ;

join DC, and at C make the angle DCE equal to

the angle CDE, the point E determined by the intersection of DA pro-
duced and CE, is the center of the circle.

81. Let AB, AC be the given lines and P the given point. Then if

O be the center of the required circle touching AB, AC, in P, S, the line

AO will bisect the given angle BAC. Let the tangent from P meet the
circle in Q, and draw OQ, OS, OP, AP. Then there are given AP and
the angle OAP. Also since OQP is a right angle, we have OP 2-Q0 8

= OP'-—OS8 =PQ i a given magnitude. Moreover the right-angled tri-

angle AOS is given in species, or OS to OA is a given ratio. Whence
in the triangle AOP there is given, the angle AOP, the side AP,
and the excess of OP- above the square of a line having a given
ratio to OA, to determine OA. Whence the construction is obvious.

82. Let the two given lines AB, BD meet in B, and let C be the cen-

ter of the given circle, and let the required circle touch the line AB, and
have its center in BD. Draw CFE perpendicular to HB intersecting the
circumference of the given circle in F, and produce CE, making EF
equal to the radius CF. Through G draw GK parallel to AB, and
meeting DB in K. Join CK, and through B, draw BL parallel to KC,
meeting the circumference of the circle whose center is C in L

;
join

CL and produce CL to meet BD in O. Then O is the center of the
circle required. Draw OM perpendicular to AB, and produce EC to

meet BD in N. Then by the similar triangles, OL may be proved
equal to OM.

83. (1) In every right-angled triangle when its three sides are in

Arithmetical progression, they may be shewn to be as the numbers 5, 4,

3. On the given line AC describe a triangle having its sides AC, AD,
DC in this proportion, bisect the angles at A, C by AE, CE meeting in E,
and through E draw EF, EG parallel to AD, DC meeting in F and G.

(2) Let AC be the sum of the sides of the triangle, tig. Euc. vi. 13.

Upon AC describe a triangle ADC whose sides shall be in continued
proportion. Bisect the angles at A and C by two lines meeting in

E. From E draw EF, EG parallel to DA, DC respectively.

84. Describe a circle with any radius, and draw within it the straight

line MN cutting off a segment containing an angle equal to the given

angle, Euc. in. 34. Divide MN in the given ratio in P, and at P draw
PA perpendicular to MN and meeting the circumference in A. Join
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AM, AN, and on AP or AP produced, take AD equal to the given per-

pendicular, and through D draw EC parallel to MN meeting AM, AN,
or these lines produced. Then ABC shall be the triangle required.

85. Let PAQ be the given angle, bisect the angle A by AB, in

AB find D the center of the inscribed circle, and draw DC perpen-
dicular to AP. In DB take DE such that the rectangle DE, DC is

equal to the given rectangle. Describe a circle on DE as diameter
meeting AP in F, G ; and AQ in F, G'. Join FG', and AFG' will

be the triangle. Draw DH perpendicular to FG' and join GD.
By Euc. vi. C, the rectangle FD, DG' is equal to the rectangle ED,
DK or CD, DE.

86. On any base BC describe a segment of a circle BAG containing

an angle equal to the given angle. From D the middle point of BC draw
DA to make the given angle ADC with the base. Produce AD to E so

that AE is equal to the given bisecting line, and through E draw FG
parallel to BC Join AB, AC and produce them to meet FG in F and G.

87. Employ Theorem 70, p. 310, and the construction becomes
obvious.

88. Let AB be the given base, ACB the segment containing the
vertical angle ; draw the diameter AB of the circle, and divide it in E,
in the given ratio ; on AE as a diameter, describe a circle AFE ; and with
center B and a radius equal to the given line, describe a circle cutting

AFE in F. Then AF being drawn and produced to meet the circum-
scribing circle in C, and CB being joined, ABC is the triangle required.
For AF is to FC in the given ratio.

89. The line CD is not necessarily parallel to AB. Divide the base
AB in C, so that AC is to CB in the ratio of the sides of the triangle.

Then if a point E in CD can be determined such that when AE, CE,
EB, are joined, the angle AEB is bisected by CE, the problem is solved.

90. Let ABC be any triangle having the base BC. On the same
base describe an isosceles triangle DBC equal to the given triangle.
Bisect BC in E, and join DE, also upon BC describe an equilateral
triangle. On FD, FB, take EO to EH as EF to FB : also take EK
equal to EH and join OH, GK ; then GHK is an equailateral triangle
equal to the triangle ABC.

91. Let ABC be the required triangle, BC the hypotenuse, and
FHKO the inscribed square : the side HK being on BC. Then BC may
be proved to be divided in H and K, so that HK is a mean proportional
between BH and KC.

92. Let ABC be the given triangle. On BC take BD equal to one
of the given lines, through A draw AE parallel to BC. From B draw
BE to meet AE in E, and such that BE is a fourth proportional to BC,
BD, and the other given line. Join EC, produce BE to F, making BF
equal to the other given line, and join FD : then FBD is the triangle
required.

93. By means of Euc. vi. C, the ratio of the diagonals AC to BD
may be found to be as AB . AD + BC . CD to AB.BE + AD.DC,
figure, Euc. vi. D.

94. This property follows directly from Euc. vi. C.
95. Let ABC be any triangle, and DEF the given triangle to which

the inscribed triangle is required to be similar. Draw any line de
terminated by AB, AC, and on de towards AC describe the triangle def
similar to DEF, join B/, and produce it to meet AC in F . Through F
draw FD' parallel to fd, F'E' parallel to fe, and join DE', then the
triangle D'E F is similar to DEF.

S 6
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96. The square inscribed in a right-angled triangle which has one
of its sides coinciding with the hypotenuse, may be shewn to be less than
that which has two of its sides coinciding with the base and perpendicular.

97. Let BCDE be the square on the side BC of the isosceles triangle

ABC. Then by Euc. vi. 2, FG is proved parallel to ED or BC.
98. Let AB be the base of the segment ABD, fig. Euc. in. 30.

Bisect AB in C, take any point E in AC and make CF equal to CE:
upon EF describe a square EFGH : from C draw CG and produce it to

meet the arc of the segment in K.
99. Take two points on the radii equidistant from the center, and

on the line joining these points, describe a square ; the lines drawn from
the center through the opposite angles of the square to meet the circular

arc, will determine two points of the square inscribed in the sector.

100. Let ABCDE be the given pentagon. On AB, AE take equal
distances AF, AG, join FG, and on FG describe a square FGKH.
Join AH and produce it to meet a side of the pentagon in L. Draw
LM parallel to FH meeting AE in M. Then LM is a side of the
inscribed square.

101. Let ABC be the given triangle. Draw AD making with the
base BC an angle equal to one of the given angles of the parallelogram.

Draw AE parallel to BC and take AD to AE in the given ratio of the
sides. Join BE cutting AC in F.

102. The locus of the intersections of the diagonals of all the

rectangles inscribed in a scalene triangle, is a straight line drawn from the

bisection of the base to the bisection of the shorter side of the triangle.

103. This parallelogram is one half of the square in the circle.

104. Analysis. Let ABCD be the given rectangle, and E1GH that

to be constructed. Then the diagonals of EFGH are equal and bisect

each other in P the center of the given rectangle. About EPF describe

a circle meeting BD in K, and join KE, KF. Then since the rectangle

EFGH is given in species, the angle EPF formed b}T its diagonals is

given ; and hence also the opposite angle EKF of the inscribed quadri-

lateral PEKF is given. Also since KP bisects that angle, the angle

PKE is given, and its supplement BKE is given. And in the same Avay,

KF is paralled to another given line ; and hence EF is parallel to a third

given line. Again, the angle EPF of the isosceles triangle EPF is given;

and hence the quadrilateral EPFK is given in species.

105. In the figure Euc. in. 30 ; from C draw CE, CF making with
CD, the angles DCE, DCF each equal to the angle CDA or CDB, and
meeting the arc ADB in E and F. Join EF, the segment of the circle

described upon EF and which passes through C, will be similar to ADB.
106. The square inscribed in the circle may be shewn to be equal to

twice the square on the radius ; and five times the square inscribed in

the semicircle to four times the square on the radius.

107. The three triangles formed by three sides of the square with
segments of the sides of the given triangie, may be proved to be similar.

Whence by Euc. vi. 4, the truth of the property.
108. By constructing the figure, it may be shewn that twice the

square inscribed m the quadrant is equal to the square on the radius,

and that five times the square inscribed in the semicircle is equal to four

times the square on the radius. Whence it follows that, &c.
109. By Euc. i. 47, and Euc. vi. 4, it may be shewn, that four times

the square on the radius is equal to fifteen times the square on one of the

equal sides of the triangle.

110. Constructing the figure, the right-angled triangles SCT, ACB
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may be proved to have a certain ratio, and the triangles ACB, CPM in

the same way, may be proved to have the same ratio.

111. Let BA, AC be the bounding radii, and D a pomt in the arc of

a quadrant. Bisect BAC by AE, and draw through D, tne line HDGP
perpendicular to AE at G, and meeting AB, AC, produced in H, P.

From H draw HM to touch the circle of which BC is a quadrantal arc

;

produce AH, making HL equal to HM, also on HA, take KK equal to

HM. Then K, L, are the points of contact of two circles through D
which touch the bounding radii, AB, AC.

Join DA. Then, since BAC is a right angle, AK is equal to the

radius of the circle which touches BA, BC in K, K' ; and similarly, AL
is the radius of the circle which touches them in L, L'. Also, HAP
being an isosceles triangle, and AD drawn to the base, AD 2

is shewn
to be equal to AK . KL. Euc. in. 36 ; 11, 5, Cor.

1 1 2. Let E, F, G be the centers of the circles inscribed in the triangles

ABC, ADB, ACD. Draw EH, FK, GL perpendiculars on BC, BA, AC
respectively, and join CE, EB ; BF, FA; CG, GA. Then the relation

between B,, r, r\ or EH, FK, GL may be found from the similar triangles,

and the property of right-angled triangles.

113. The two hexagons consist each of six equilateral triangles, and
the ratio of the hexagons is the same as the ratio of their equilateral

triangles.

114. The area of the inscribed equilateral triangle may be proved to

be equal to half of the inscribed hexagon, end the circumscribed triangle

equal to four times the inscribed triangle.

115. The pentagons are similar figures, and can be divided into the
same number of similar triangles. Euc. vi. 19.

1 16. Let the sides AB, BC, CA of the equilateral triangle ABC touch
the circle in the points D, E, F, respectively. Draw AE cutting the
circumference in G ; and take O the center of the circle and draw OD :

draw also HGK touching the circle in G. The property may then be
shewn by the similar triangles AHG, AOD.

GEOMETRICAL EXERCISES ON BOOK XI.
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3. Let AD, BE be two parallel straight lines, and let two planes
ADFC, BEFC pass through AD, BE, and let CF be their common
intersection, fig. Euc. xi, 10. Then CF may be proved parallel to BE
and AD.

4. This theorem is analogous to Euc. xi. 8. Let two parallel lines

AC, BD meet a plane in the points A, B. Take AC equal to BD
and draw CE, DF, perpendiculars on the plane, and join AE, BF. Then
the angles CAE, DBF, are the inclinations of AC, BD to the plane,
Euc. xi. def. 5, and these angles may be proved to be equal.

5. Let AB, CD be parallel straight lines, and let perpendiculars be
drawn from the extremities of AB, CD on any plane, and meet it in

the points A', B', C, D'. Draw A'B', CD' ; these are the projections of

AB, CD on the plane, and may be proved to be parallel.

6. Draw the figure, the proof offers no difficulty.

7. Let AB, AC <lrawn from the point A, and A'B', A'C drawn from
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the point A', in two parallel planes, make equal angles with a plane EF
passing through AA', and perpendicular to the planes BAC, B'A'C.
Let AB in the plane ABC he parallel to A'B' in the plane A'B'C : then
AC may be proved to be parallel to A'C\

8. The plane must be drawn through the given line so that the
plane and the other given line may be equally inclined to a third plane.

9. The required plane must be drawn through the given point so as
to have the same inclination to a third plane, as the plane which passes
through the two given lines.

10. From the point A let AB be drawn perpendicular to a plane,
and AC perpendicular to a given line CD in a plane : join BC, then BC
is at right angles to CD. For AB, BC, CD may be considered as three
consecutive edges of a rectangular parallelopiped, and AC the diagonal of
one face.

11. In the triangle BCD in which BE is drawn from the vertex to a
point E in the base CD ; it may be proved that the difference of the
squares on the sides BC, BD is equal to the difference of the squares on
the segments CE, ED of the base. By the converse of Theo. 149, p. 83.

12. Let BC be the common intersection of the two planes ABCD,
EFGH which are inclined to each other at any angle. From K at any
point in the plane ABCD, let KL be drawn perpendicular to the plane
EFGH, and KM perpendicular to BC, the line of intersection of the two
planes. Join LM, and prove that the plane which passes through KL,
KM is perpendicular to the line BC.

13. About the given line let a plane be made to revolve, till it passes
through the given point. The perpendicular drawn in this plane from
the given point upon the given line is the distance required.

14. Through any point in the first line draw a line parallel to the
second ; the plane through these is parallel to the second line. Through
the second line draw a plane perpendicular to the fore-named plane cut-

ting the first line in a point. Through this point draw a perpendicular in

the second plane to the first, and it will be perpendicular to both lines.

15. Through any point draw perpendiculars to both planes ; the plane
passing through these two lines will fulfil the conditions required.

16. From the points where the lines meet the planes, draw two lines

perpendicular to the intersection of the planes.

17. Let AB, AC in one of the planes make equal angles with DE the
line of the intersection of the planes. Let AB be equal to AC. Draw
BF, CG perpendiculars on the other plane, and draw FA, GA in that

plane, and prove the angle BAF equal to the angle CAG.
18. If the intersecting plane be perpendicular to the three straight

lines ; by joining the points of their intersection with the plane, the figure

formed will be an equilateral triangle. If the plane be not perpendicular,

the triangle will be isosceles.

19. Let the straight lines intersect in A, and let a plane be drawn
cutting the three given lines in the points B, C, D, and the fourth in E.

20. This will appear from Euc. i. 19.

21 ; Let S be the proposed solid angle, in which the three plane angles

ASB, ASC, BSC are known, it is required to find the angle contained by
two of these planes, such as ASB, ASC. On a plane make the angles

B'SA, ASC, B"SC equal to the angles BSA, ASC, BSC in the solid figure ;

take B'S and B"S each equal to BS in the solid figure ; from the points

B', and B" at right angles to SA and SC draw B'A and B"C, which will

intersect each other at the point O. From O as a center, with radius
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AB' describe the semicircle B'&E ; at the point O, erect Ob perpendicular

to B'E and meeting the circumference in b
;
join A6 : the angle EA6 will

be the required inclination of the two planes ASC, ASB in the solid angle.

(Legendre's Geometry, translated by Sir David Brewster, pp. 125, &c.)

22. Let ASC, ASB (same figure as in 21) be the two given plane

angles ; and suppose for a moment that CSB"is the third angle required

;

then employing the same construction as in the foregoing problem, the

angle included between the planes of the two first, the inclination of

these planes would be EA6. Now as EA6 can be determined by means
of CSB", the other two being given, so likewise may CSB" be determined

by means of EA6, which is just what the problem requires.
' Having taken SB' at pleasu're, upon SA let fall the indefinite perpen-

dicular B'E ; make the angle EA6 equal to the inclination of the two
given planes ; from the point b, where the side Ab meets the circle des-

cribed from the center A with the radius AB', draw 60 perpendicular to

AE ; from the point O, at right angles to SC draw the indefinite line

OCB" ; make SB" equal to SB' ; the angle CSB" will be the third plane

angle required. (Legendre's Geometry, translated by Sir David
Brewster, pp. 127, &c.)

23. Let the three lines meet in the point A, and let a plane intersect

them in the points B, C, D, so that AB, AC, AD are equal to one
another. Describe a circle about the triangle BCD, and let O be the

center ; the line AO is perpendicular to the plane BCD.
24. This may be readily proved by Euc. xi. 17.

25. Construct the figure, and it will be found that the angle between
the diagonal and one side of the cube measures the inclination of the

two planes.

26. The diagonal plane of a cube is at right angles to two of the faces

of the cube, and makes angles, each equal to half a right angle with the
other four faces.

27. Let a rectangular parallelogram ABCD, be formed by four

squares, each equal to a face of the given cube, and let EF, GH, KL, be
the lines of division of the four squares. Let BD the diagonal of ABCD,
cut EF in M ; the square on BM to the square on AB is as 17 to 16.

Let BG the diagonal of ABHG cut EF in N ; the square on BN is to

the square on AB, as 20 is to 16 ; hence there is some square between that

on BM and BN which bears to the square on AB, the ratio of 18 to 16,

or of 9 to 8.

The following addition may be easily proved. If six edges of a cube
taken in order round the figure, be bisected, and the points of bisection

be joined in succession, these six lines will form a regular hexagon.
28. From the six points out of the perpendicular, draw perpendiculars

to the plane, and join the points where the perpendiculars meet the plane.

29. This is to shew that the square on the diagonal of a rectangular
parallelopiped is equal to the sum of the squares on its three edges.

30. This theorem is analogous to the corresponding theorem respect-

ing a rectangular parallelogram.

The axis of a parallelopiped must not be confounded with its diagonal.

31. Let the figure be described in a similar manner to that of Theorem
2, page 337: by employing Euc. n. 12, 13, instead of Euc. I. 47, the

truth of the theorem may be proved.

32. Describe a circle passing through the three given points, and
from the center draw a line perpendicular to its plane. Then every
joint in this perpendicular fulfils the conditions required.
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33. Bisect the base by a line drawn in the given direction, whether
parallel to a given line, or tending to a given point. The plane drawn
through the bisecting line and the vertex of the pyramid, gives the
solution of the problem.

34. Through each line draw a plane parallel to the other ; these
planes will be parallel, and obviously form two of the faces of the
parallelopiped. Through each line and one extremity of the other,
draw a plane ; and a second plane parallel to it through the remaining
extremity. This will complete the figure ; but there will be four
varieties of cases according as the extremities are situated.

35. From the vertex A draw a line to any point B in the base of the
pyramid, and meeting the given section in B'. From the angular points
of the base draw lines to the point B ; also from the angular points of the
given section to the point B'. Then any triangle in the section, may be
shewn to be similar to the corresponding triangle in the base. Euc. vi. 20.

36. Let AB be at right angles to the plane BCED, and let ihe per-
pendiculars from AB intersect the plane GHKL in the line MN, and let

HNK be the common intersection of the planes CBDE, GHKL. Join
AM, BN, and prove MN to be a straight line perpendicular to HK.

37. Draw the necessary lines, and by Euc. i. 47.

38. Let AE meet the straight lines BE, DE, in the plane BED,
fig. Euc. xt. (i, and let the angle AEB measure the inclination of AE to

the plane BDE ; then the angle AEB is less than the angle AED.
Draw AB perpendicular to the plane, make ED equal to EB and join

BD, AD. Euc. i. 18, 19.

39. Let HM be the common section of the two planes MN, MQ;
and let AB be drawn from a point A in HM perpendicular to the plane
MN : then, if planes be drawn through AB to cut the planes MN, MQ
in lines which make the angles CAD, EAF with each other, and that

the plane BACD is perpendicular both to MN and MQ ; the angle CAD
will be greater than EAF. Shew that the angle BAD is less than the

angle BAF, and it follows that CAD is greater than EAF.
40. Let GH be the edge of the wall, A, B the two points, and let

the line joining A, B, meet the edge of the wall GH in E. If the points

AE, BE make equal angles with GH, then AE, EB may be proved to

be less than any other two lines drawn from A, B, to meet GH. in any
other point E'.

41. Let A, B, be the given points, and GH the given straight line
;

draw AC, BD, perpendicular on GH, and in the plane AGH produced,
draw DB' perpendicular to GH, and equal to DB

;
join AB', meeting

GH in E, and draw EB. Then AE 4- EB is the minimum. For the

triangles EDB, EB'D are equal, being ri^ht- angled at D, and having one
side common, and the others equal. Whence the angle BEH is equal

to GEA, each being equal to B'EH. The conclusion follows from the

demonstration of the preceding theorem.
42. Let AB, A'B' be any portions of the two straight lines. At B'

draw B'C parallel to AB, and B'C perpendicular to the plane passing

through A'B'C. Let the plane passing through A'B'C intersect the line

AB in the point A. In the plane A'B'C, from A draw AA' perpendicular

to A'B', and AC perpendicular to AA'. Then the plane CAB passing

through the line AB may be shewn to be parallel to the plane A'B'C'
passing through the line A'B', and that no other parallel planes can be
drawn through AB, A'B'. Also AA' is the perpendicular distance

between the two planes, and that AA' is less than any other line which
can be drawn between the two planes.
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6. Apply Euc. xn. 2.

6. First, to bisect a circle by a concentric circle. Let C be its center,

AC any radius. On AC describe a semicircle, bisect AC in B, draw BD
perpendicular to AC, and meeting the semicircle in D

;
join CD, and

with center C, and radius CD, describe a circle ; its circumference shall

bisect the given circle. Join AD. Then by Euc. vi. 20, Cor. 2, the
square on AC is to the square on CD as AC is to CB ; and Euc. xn. 2.

In the same way, if the radius AC be trisected, and perpendiculars be
drawn from the points of trisection to meet the semicircle in D, E, the

two circles described from C with radii CD, CE shall trisect the circle.

And generally, a circle may be divided into any number of equal parts.

Note. By a similar process a circle may be divided into any number
Of parts which shall have to each other any given ratios.

7. To divide the circle into two equal parts. Let any diameter
ACB be drawn, and two semicircles be described, one on each side of the

two radii AC, CB : these semicircles divide the circle into two equal
parts which have their perimeters equal. In a similar way a circle may
be divided into three equal parts, by dividing the diameter into three equal
parts, AB, BC, CD, and describing semicircles upon A.B, AC on one side

of the diameter, and then semicircles upon DC, DB on the other side of

the diameter.

8. By Euc. xn. 2, the area of the quadrant ADBEA is equal to the
area of the semicircle ABCA.

9. By Euc. xn. 2. The squares on the radii of the two circles may
be shewn to be in the ratio of 3 to 1.

10. By reference to Theorem 2, p. 346 and Euc. xn. 2, the parts of

the diameter may be proved to bear to each other the ratio of 1 to 2.

11. Apply Eiic. xn. 2.

12. If the circles whose centers are B and C touch each other in S,

the problem may mean :— to find the point R, so that the figure between
:he three circles (see fig. Theo. 2, p. 346) may be bisected by the line

KS ; or it may mean, if two chords be drawn from P, Q, to R, the
portions of the lunes bounded by parts of these chords and portions of
the circles may be equal.

13. This will be found by Theorem 1, p. 346.

14. Produce CD to meet the arc of the quadrant in E. Then the
sector ACE is half of the quadrant: also the semicircle CD A may be
shewn to be equal to half the quadrant. The segments on CD and DA
are similar and equal, if the figure bounded by DA, AC, and the arc CD
be added to each, the remaining part of the semicircle on AC is equal to

the triangle ACD which is a right-angled isosceles triangle.

15. The area of the circle of which the quadrant is given, is to the
area of the circle which touches the three circles, as 36 is to 1. And the
quadrant is one-fourth of the area of the circle. Hence the quadrant is

to the circle as 9 to 1.
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16. The circles on BA, AC are as the squares on BA, AC ; Euc.
xu. 2. and the square on BA is equal to the rectangle BC, BD, also the
square on AC is equal to the rectangle CB, CD ; whence it follows that
the circles are as BD, CD.

17. Let ABC be the right-angled triangle, BC being the hypotenuse,
and let semicircles be described on AB, AC as diameters. Bisect AB,
AC, BC, in E, F, G ; from G draw perpendiculars on AB, AC, meeting
the semicircles in H, K, and shew that GH is equal to GK. By Euc.
xii. 2. the difference is found.

18. Let AB, A'B' be arcs of concentric circles whose center is C and
radii CA, CA', and such that the sector ACB is equal to the sector

A CB'. Assuming that the area of a sector is equal to half the rectangle
contained by the radius and the included arc : the arc AB is to the arc

A'B' as the radius A'C is to the radius AC. Let the radii AC, BC be
cut by the interior circle in A', D. Then the arc A'D is to the arc AB,
as A'C is to AC ; because the sectors A'CD, ACB are similar : and the
arc AB' is to the arc AD, as the angle ACB' is to the angle ACD, or the
angle ACB. Euc. vi. 33. From these proportions may be deduced the
proportion :— as the angle ACB is to the angle A'CB', so is the square
on the radius A'C to the square on the radius AC. And by Euc. xu. 2,

the property is manifest.

19. Let AB, A'B' be arcs of two concentric circles, whose center is

C. ACB, A'CB' two sectors such that the angle ACB is to the angle

ACB', as AC 3 is to AC*. If AC, BC be cut by the interior circle in A,
D; then the arc AB' is to the arc A'D, as the angle A'CB' is to the angle

A CD, or ACB. Euc. vi. 33. And the arc A'D is to the arc AB, as the

radius A'C is to the radius AC, by similar sectors. By means of these

two proportions and the given proportion, the rectangle contained by the

arc AB and the radius AC, may be proved equal to the rectangle con-
tained by the arc A'B' and the radius AC.

20. Let the arc of a semicircle on the diameter AB be trisected in

the points D, E ; C being the center ;
join AD, AE, CD, CE ; then the

difference of the segments on AD and AE, may be proved to be equal to

the sector ACD or DCE.
21. Assuming that the area of a sector of a circle is equal to half

the rectangle contained by the radius and the arc, the sector AOC is

shewn to be equal to AOB.
22. Let POQ be any quadrant, O being the center of the circle, and

let BG, DH be drawn perpendicular to the radius PO, and OB, OD be
joined. The triangle GBO is equal to DUO .

23. The radii of the circles may be proved to be proportional to the

two sides of the original triangle. Then by Euc. xu. 2 ; vi. 19.

24. The triangles CEA, CEB are equal, and the difference of the two
segments is equal to the difference of the parts of the semicircle made by
CE. The difference of the same parts may also be shewn to be equal to

double the sector DEC.
25. Let AB be the hypotenuse of the right-angled triangle ABC,

and let the semicircles described upon the sides AC, BC, intersect the

hypotenuse in D. Join AD. AD is perpendicular to AB. The seg-

ments on AC, AD, and on one side of CD are similar ; and the segments

on AC may be shewn to be equal to the segments on AD, CD. Also

the segment on BC may be shewn to be equal to the segments on BD,
and the other side of CD. If Euc. vi. 31 be true for all similar figures,

the conclusions above stated follow at once.
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26. The area of the triangle ABC is equal to the quadrant ABD.
From these equals take the figure AEDB.

27. The segments on BC, BA, AC maybe shewn to be similar. And
similar segments of circles may be proved to be proportional to the
squares on their radii, Euc. xn. 2, and to the squares on the chords on
which they stand, Euc. vi. 6.

If Euc. vi. 31 be extended to any similar figures, the equality follows
directly.

28. This is shewn from Euc. xn. 2 ; i. 47; v. 18.

29. The sum of the squares on the segments of the diagonals, is equal
to the sum of the squares on each pair of opposite sides of the quadrila-
teral figure. Hence by Euc. xn. 2 ; i. 47; v. 18, the property is proved.

30. The squares on the four segments, are together equal to the
square on the diameter. Theorem 6, p. 163. Then by Euc. xn. 2.

31. This is shewn by Euc. i. 47 ; xn. 2 ; v. 18.

32. Apply Theorem 1, p. 346.

33. Is analogous to Euc. in. 14.

34. The arc of a circle being considered as the measure of an angle
which the arc subtends ; the angle between the planes of two great
circles can be shewn to be equal to the angle between the two radii of
that great circle which bisects the two planes at right angles.

35. First, shew that all the lines drawn in the plane of the section,

from that point where the diameter of the sphere meets the section,

to the surface of the sphere, are equal. The second part is analogous to

Euc. in. 14.

36. This may be proved indirectly as in Euc. in. 18.

37. Let D be the given point, and from D let DA be drawn through
the center E, and meeting the surface in C, A. Let DB be a line from
D touching the sphere at B. Join BE. Then the triangle DBE (fig.

Euc. in. 36) is in a plane passing through D, and E the centre of the
sphere, and the distances DE, EB are always the same. Hence it follows

that BD is always of the same length. Euc. i. 47.

The sphere which touches the six edges of any tetrahedron, has four
circular sections touching the sides of the four triangles which form the
surface of it.

38. Let the circle ADB cut the circle AEB in the diameter AB at

any angle, C being their common center. Next let the plane perpen-
dicular to AB cut the circumference of the circle ADB in D, F, and the
circumference of AEB in E, Gr. Then E, D, G, F may be proved to be
in the circumference of a circle.

39. Let AB, CD, EF be three lines meeting the surface and inter-

secting each other at right angles in the point G within a sphere whose
centre is O. Join OG and produce it to meet the surface of the sphere
in H, K ; then HK is a diameter. From O draw OL, OM", ON perpen-
dicular on AB, CD, EF respectively, then these three lines are bisected

in L, M, N. Next draw OP perpendicular to the plane of AB, EF, and
join PL ; PL is perpendicular to the line AB ; also in the same plane
join PN ; PN is also perpendicular to EF. Join also OA, OC, OF.
Then Euc. n, 9, the squares on AG, BG, are equal to double the squares

AL, LG. Similarly for the lines CD and EF ; and by Euc. i. 48, n. 5.

Cor. it may be proved that the squares on AG, GB, CG, GD, EG, GF,
are together equal to the square on HK and twice the rectangle HG, GK.

40. Take a point A on the spherical surface of the fragment as a center,

and with any radius AB describe a circle upon it. Take two other
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points C, D in the circumference of this circle, and describe a plane tri-

angle A'B'C having its sides equal to the distances AB, BC, CA, re-

spectively. Describe a circle about the triangle A'B'C, and draw the
diameter A'D' ; with centers A', D' and the radius equal to AB, describe
circles intersecting each other in E', and through the points A', D', E'
describe a circle ; the diameter of this circle will be equal to that of the
sphere of which the fragment is given.

41. All the sections may be proved to be equilateral triangles.

42. From the vertex A draw the line AE perpendicular on BCD the
base of the tetrahedron, and from E draw the line EF perpendicular on
the plane ABC ; the angle between the perpendiculars is equal to the
inclination of two planes of the tetrahedron. It will be found that in the
triangle AEF, the side AE is three times EF. The inclination may also

be found as in Prob. 21, p. 339.

43. The two lines drawn from two angles to bisect the opposite
sides of the base of the tetrahedron, are at right angles to the sides of

the triangular base.

44. Draw BO and produce it to meet DC in E. Then Euc. i. 47.

45. First, let ABCD be a tetrahedron ; bisect the opposite edges,

AB in E, and CD in F
;
join EF, and prove EF perpendicular to AB,

CD. Then conversely.

46. If FE be the shortest distance of the opposite sides AB, CD
;
join

CE, DE, and shew that the square on EF is one-fourth of the square on CD.
47. First prove the direct proposition, then the converse of it.

48. Let ABCD be a tetrahedron and let the line EF joining the
bisections E, F of the two opposite sides AB, CD, be bisected in G ; the
line AO drawn from the vertex A to the plane of the base BCD passes
through G. Draw the necessary lines. Euc. vi. 4.

49. The joining lines in the theore r, are the lines joining the centers

of the circles inscribed in the four faces of the given tetrahedron.

50. From the vertex A of a tetrahedron draw AO to the point O, the
center of the circle which circumscribes the face BCD, and prove AO
perpendicular to the plane BCD ; then conversely.

51. Let ABCD be a regular tetrahedron. From A in the plane
ABC draw AE perpendicular to BC, and join DE in the plane BCD. also

from A draw AG perpendicular to the line DE. Then the angle AEG
is the inclination of the two faces ABC, DBC of the tetrahedron, and
the base EG is one-third of the hvpotenuse AE in the right-angled

triangle AGE.
Let abcdefbe& regular octahedron whose faces are equal to those of

the tetrahedron. Join af, two opposite vertices. Draw a g in the plane

a b c perpendicular to b c, and g e perpendicular to af. Drawfg in the

plane/ b c, and from/ draw/ h perpendicular to a g produced.

Then agf is the inclination of two faces of the octahedron. Also in

the right-angled triangle/A^, g h may be proved to be one-third offg, and

fg is equal to AE. Hence the triangles/^ h, AEF are equal in all respects.

Therefore the anglefg h is equal to the angle AEB. Hence the angle AEF
is the supplement of the angle agf or the inclination of two contiguous

faces of a tetrahedron, is the supplement of the inclination of two contiguous

faces of an octahedron.

52. It may be shewn that the diameter of the sphere winch circum-

scribes a regular octahedron will be to an edge as the diagonal is to the

side of a square.
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53. Let AB, CD, EF be three diameters of a sphere each at right

angles to the other two, and intersecting each other in O the center of the

sphere, the extremities of the lines meeting the surface of the sphere.

Join AC, CB, BD, DA, then these four edges of the figure may be proved
equal to one another by the right-angled triangles. In the same way
the other edges may be proved equal. Having proved all the edges equal,

the faces of the figure are equilateral triangles. Lastly prove the incli-

jiations of every two faces to be equal.

It may also easily be shewn that if lines be drawn joining the centers

of the faces of a cube ; these will be the edges and diagonals of a regular
octahedron.
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